b gl G ll A sgl 5
MIDDLE EAST UNIVERSITY

Enhancing The Bellovin and Cheswick's
Algorithm by Adding Dummy Values and

Reorder Process

By
Fadi Yousef Ali Eshtaiwi
Supervised by
Dr. Oleg Viktorov
Master Thesis

Submitted in Partial Fulfillment of the Requirements for

the Master Degree in Computer Science
Department of Computer Science
Faculty of Information Technology

Middle East University

Amman, Jordan

January, 2012

Authorization Statement

I, Fadi Yousef Ali Eshtaiwi, authorize Middle East University to supply hardcopies
and electronic copies of my thesis to libraries, establishments, or bodies and institutions
concerned with research and scientific studies upon request, according to the university

regulations.

= =
sl b

Signature 7 5 e

Date : 2371 /2012,

A el e (g T i gkl il il ¢) e i g il i L

R |1 P 1 T T LT

‘_u.f.:-l,_,.'lr-._n.yd# s

-

£ Tlwwe L ks

LR

2072 23 1 pepas

1l
Examination Committee Decision

This is to certify that the thesis entitled “Enhancing the Bellovin and Cheswick's
Algorithm by Adding Dummy Values and Reorder Process” was successfully defended

and approved on January 23" 2012.

Exgmination Commitiee Siguatiire
'-l;.: ..;l e e i
O Cleg Yikeony Cliasrpericon® Sgpandio ¥ o o e

Dreparmmes). of Computer Soemce

wfiddle Euer Univetits

s Hisssem Hall Qeasaded

Wi

D‘ﬁl:l'ln'rm rhff.'an:'p;lq' Aot

Iviiddle Exat University

D, Hagcein lossdl Al-Badadil - g
s binr _{._'T.I -."-f E,

Faeubty pllafermation Techaology

Perm Linbwimsy

Declaration

I do my hereby declare the present research work has been carried out by me under
the supervision of Dr. Oleg Viktorov and this work has not been submitted elsewhere for

any other degree, fellowship or any other similar title.

Name : Fadi Yousel Ali Eshtaiwi,

Signature ’

Date : 2371 7201 2.

Dedication

To my father, Yousef Eshtaiwi, for being my idol in the life , my mother, for being
my sunshine, my sisters , and to my wife, Natasha , for her support, and for her great

patience.

\

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Oleg Viktorov, whose
expertise, understanding, and patience, added considerably to my graduate experience. |

appreciate his vast knowledge and skill, and his patience.

I would also like to thank my wife Natasha for the support she provided me through
my entire life and in particular, I must acknowledge her, without whose love,

encouragement and editing assistance, I would not have finished this thesis.

Vil

Table of contents

Subject pages
Authorization StatemMENt.....cocuiiiiiee e Il
COMMITEEE DECISION. ...ttt ettt e e e e e e e e e [l
DECIAIAtION. ...ttt e e e 1%
DRAICATION. .ee ettt ettt ettt sraeeea \
ACKNOWIBAZMENTS....oiiiieieee i e e e re e e e e eee s VI
L00] 01 =] o) £ J OO PP OO PPUUPPPPROUPPORPPN Vi
I o]l T=q U] TP RPUPRPURROS IX
List of AbBreviations.......cccoi i Xl
B =18 0011 To] Lo =4 =TSRSS XV
ADSTIACT ..ttt st et et s et e s st st et s bn s XVI
Arabic ADSTIACT ..ot e sttt e e e e XVII
Chapter 1. INtrodUCTION....ccuiieeee ettt ettt e et se e e sbeebesaesrnaenne 1
1.0 OVEIVIBW ettt et et e e s s ettt e eer s en s e s e e nees 1
1.2 Problem Stat@ment ... e s e 4
1.3 OBJECLIVES ..ottt sttt et et e e et et ers bbb e e s e e s e sae sbeebesbeebesnsanearsnns 5
13,1 STUAY ATM 1ovroeooeeeeees oo sesssss oo oo s essss s s >

5
1.3.2 StUAY ODJECLIVES ..uieeieeecee ettt e ste st st sbesnssnaenaenes

5

1.4 Study SIgNITICANCE oottt st sresr et

VIII

Chapter 2 Literature REVIEW........oicieieenie et ee ettt et esasbbaeeaeaeseeessennnns 6

Chapter 3 MethOodOlOgYcovviveirieieieieieeeerre et et ee e s es bbb es et s e s 14
2 - 1ol <=4 TV o T OSSR 14
3.2 Project Implementation REQUIr€@MENTccuccueeieereieie ettt ereereeraesnenns 18
3.2. 1 BlOOM FIlLEIS ettt sttt e st e s et s 19
3.2.2 HaSh FUNCHIONS.....oiiieeieeiet ettt et sttt et se s 21
3.2.3 RSA AlGOTItNM ettt ettt e e e e e se sne et 23
3.3 FIOWCRNAIT ittt st sttt et st et et s 27
3.4 Design and Implementation SCreens..........cceceeveveseceeeeceese e e e e 28
Kt YT VL= Y of 1= o (OO RUPTP SRR 28
3.4.2 CHENT DESIEN woveeiereeirecte et eetisreereereetaesbes e e et sesbesteasesssansansesaesaessessessons 30
Chapter 4: Test and Evaluations of Application and Examples........cccecevveruenneee. 33
4.1 Test of the Hash FUNCLION ProCess.......ooveieiriiveineineee et 33
4.2 RSA TEST ettt ettt e e e et e e e e she sttt ee e e aennen 35
4.3 Test of the Whole Program........ ettt e 36
4.4 Critical EVAlUQTION....coieciee ettt st e s e 41

3.5 Critical Evaluation of This Project.......cuceveninieieciniicee ettt eeeeeereesenenns 42

Chapter 5 Results.................

5.2 Code Discussion

Chapter 5: Conclusions........

Chapter 5: ReCOmMmMENAtioNS......coocieieeieireecreeree ettt sre et eteevesre e enn e

AppendiX......ccceeveeneennneecenn

Referencescccceeeeereecenennne

List of figures

Figure

Figure 1: Bellovin and Cheswick's Algorithm before Development............

Figure 2: Bellovin and Cheswick's Algorithm after Development

Figure 3: Design Methodology.......c.ccceveiieceineiceceee ettt

Figure 4: Example on Suggested SYSteM.........cocvveveevrenrrerereereeeee e e ere v

Figure 5: Bloom Filters.........

Figure 6: An Example of Bloom Filterscecevieieceieciice e

Figure 7: Client and Server Options........cccucveceecrseseseste e ste e resvess s ee s

Figure 8: Server Screen........

Figure 9: Insert Data MeSSage BOX.....cvuiuieveieetiesie ettt s e e e

Figure 10: Client’s Interface

43

52

77

78

79

Page

15

16

17

18

19

20

28

29

30

31

Figure 11: Message Box tells the Clients there is no Query.......cooceevvvevvevevennens

Figure 12: The First Hash Value of Fadi word.......c.cccecvvvieciiiccnccce e,

Figure 13: The Second Hash Value of Fadi word..........ccecuveieeiiieecniececeee.

Figure 14: The Third Hash Value of Fadi Word..........ccccoveveevencnvrveeereeeeeennnns

Figure 15: The Result of Encrypting Fadi Word by Using Sender’s Public Key.

Figure 16: The Result of Encryption the Query for Second Time........ccccccveuee.e.

Figure 17: Server’s Databaseccccciviviniisiinie sttt st st e et es en s

Figure 18: Searching on the Server’s Database about Fadi word.....................

Figure 19: The Result of Query Server’s Database on “Fadi Eshtaiwi”...............

Figure 20: The Result of “Fadi Eshtaiwi Middle ” Query......ccccoeevvvrcr e creceenen,

Figure 21: The Result of First Hash Function of Fadicccecvevvvvvnvevecece,

Figure 22: The Result of Second Hash Function of Fadicccccecveveevinnvecie e,

Figure 23: The Result of Third Hash Function of Fadic.cccccveeveeveeecernrenen..

Figure 24: The Result of First Hash Function of EshtaiWi..........cccceeveevveveiveenennnnns

Figure 25 The Result of Second Hash Function of Eshtaiwi......c.ccccccvecvecvennee.

Figure 26: The Result of Third Hash Function of EshtaiWi..........cccceeeerveecvecernnnns

Figure 27: Hash Vales and Dummy Values after the Reorder Process of

“Fadi”

Figure 28: Hash Vales and Dummy Values after the Reorder Process of

ESNTAIWI” QUETY .ecve it ettt st e sbesbesbe s steeaeeresrsesesaebaesaesbesbesbensesnne sasens

32

34

34

35

36

36

37

38

39

40

44

45

45

46

46

47

48

Figure 29: The Result of Querying Fadi EshtaiWicccccoeecvvvvvvvevniseeen,
Figure 30: Collision Rate at 10 WOIdSccoceveeeeeeeeeeeceieree ettt et e
Figure 31: Collision Rate at 30 WOIASccccevveeeereee ettt sre v v v e
Figure 32: Collision Rate at 40 WOIASccceveeereerecreieeeieeereereer et see e e e
Figure 33: Marks of Enhancing the Privacy in this Projectccccccecvveverenen.
Figure 34: Interface BUttONS........cueiieii it

Figure 35: SEarch BUTTONcvcveuiieeeieeceteenee sttt ee e eree e e e ae e e e e arsraaeaeas

Figure 36: INSert Data....cccceiie ettt e e e e

Figure 37: Interface TEXTDOX ...t e st

List of Tables

Table 1 Public and Private Keys Functionsc.c.cooinat.
Table 2 Advantages and Disadvantages of Using RSA...................o...
Table 3 Bloom Filters VS RSA Applications.............coovviiiieinn.n.
Table4 Hash Function Results.............c.oooooiiii
Table 5 Results of Inquiry Three Words of the Database....................
Table 6 QUEry Time.oiuiiiie e

Table 7 Hash FUNCEION RESUIES....cuiiiiiiie ittt ettt st ve e e

23

25

25

35

40

43

47

49

50

51

51

52

53

53

72

74

Xl

Table 8 Reordering RESUIS.......cvvverieririveiir e e sr e e e v e er e ee e enees

List of Abbreviations

AES Advanced Encryption Standard

DES Data Encryption Standard

FTP File Transfer Protocol

MAC Message Authentication Code

MD5 Message Digest Algorithm

TCP Transmission Control Protocol

IP Internet Protocol

UDP User Datagram Protocol

NACKs Negative acknowledges

RTP Real-Time Transport Protocol

SRM Scalable Reliable Multicast

URGC Uniform Reliable Group Communication Protocol

MFTP The Multicast File Transfer Protocol

LBRM Log-Based Receiver-reliable Multicast

STORM Structure-Oriented Resilient Multicast

MIT Massachusetts Institute of Technology

49

Xl

KDC key distribution center

FTP File Transfer Protocol

POP Post Office Protocol

NFS Network File System

MD5 Message-Digest Algorithm

SHA Secure Hash Algorithm

NIST National Institutes of Standards and Technologies

DSA Digital Signature Algorithm

PKE Public Key Encryption

PEKS Public key encryption with keyword search

IBE Identity Based Encryption

SUNDR Secure Un-trusted Data Repository

BFS Byzantine fault tolerant file system

BFT Bloom Finger Table

SNS Social Networking Sites

Exug Encryption query by using public key of Receiver

Exra Encryption query by using private key of Sender

Dxre Decryption query by using private key of Receiver

Dxua Decryption query by using public key of Sender

X

XIvV

Dxra Decryption query by using private key of Sender

Dxus Decryption query by using public key of Receiver

Terminologies

Security: The security of a system is the ability of the system to support the system
availability, data integrity and confidentiality. So if the system fails to support these
three characteristics or protect them, then the system amounts to a security

violation or weakness.

Network Security: The network security is the protection of a computer network
and its services from unauthorized modification, destruction, or disclosure. In other
words, the network security is the process to make sure that the data or services will

reach the target workstation and data, services will be protected from hackers.
Cryptography: it is the science and study of hiding information and secretes writings.
Digital signatures: a property that used to signing the messages.

Authentication: Only eligible and authorized voters can vote and each voter can

vote only once.

Privacy: all votes must be secret. No participant other than a voter should be able to
determine the value of the vote cast by that voter. In other words, neither election

authorities nor anyone else can link any ballot to the voter who cast it.

Protocols: a set of rules governing communication within and between computing

endpoints or entities.

Reliability: all possible steps shall be taken to avoid the possibility of fraud or

unauthorized intervention affecting the system during the whole voting process.

XV

Verification: is the act of proving or disproving the correctness of intended
algorithms underlying a system with respect to a certain formal specification or

property, using formal methods of mathematics.

Database: is a structured collection of records or data that is stored in a computer

system. A database relies upon software to organize the storage of data.
Flexibility: a system is flexible and simple, not complex.

Eligibility: is a decision making process where a population chooses an individual to

hold official offices.

XVI

Enhancing The Bellovin and Cheswick's Algorithm by Adding Dummy
Values and Reorder Process

Prepared by
Fadi Yousef Ali Eshtaiwi

Supervised by
Dr. Oleg Viktorov

Abstract:

Bellovin and Cheswick published a paper titled "Privacy-Enhanced Searches Using
Encrypted Bloom Filters" and focused on the third party problem. It is often necessary
for two or more parties that do not fully trust each other to share data selectively. They
propose a search scheme based on Bloom Filters and group ciphers encryption. A semi-
trusted third party can transform one party’s search queries to another party’s
database. Third party problem shows in the privacy and it's always a sensitive position
because it's the controller and it has all the secret of the agency or company and no one
can send any data without its permission because it has all the keys between the sender
and recipient. Third party is used in many applications nowadays except any program

authored by Microsoft is a first party application.

Enhancing the Bellovin and Cheswick's algorithm by Adding Dummy Values and
Reorder Process will help us to increase the privacy of search process and eliminate the

"Third Party" by adding new features to Bellovin and Cheswick's algorithm.

The new algorithm will eliminate the "Third Party" and it will be appropriate for two
or more parties that do not fully trust each other to selectively share data. So, two
intelligence agencies may wish to let each other query their databases, while only
disclosing clearly relevant documents to the other party. Even then, there may be
restrictions that must be observed. So, the first part will enter the shared database and
looking for any data it wants and no one can figure out what the information you look

for.

XVl

ol Bale) 5 Ao 5 o Adlaly ly puand 5 (1 s g 3) 53 (g
dlac
$ 55 o g ol
<)
s s gl)

UA.AJAS\

ol aladialy 3) ghital) dua guaddl) Giagl) CilS jaa’ ¢ ging Alia Jaaly Cheswick g Bellovin ¢y s alé
Gllae Sy Ofiisa s Ol oY ol on Al Agald) AlSda Lo 3 ga S sidall (Bloom) psly
adint il Ay oy i JS sy Cun L oany Ll Ladb LS Ly sl sl cilaglaal UL Lasky of
cliby 330 Y Lo Aga clolaio) Jik WS Bgige b dga o adind .5 aa) cle ganall 5 ash julaa o
3 Clillly a2 Agad g) uleaad Lgaisa 5 A guail) (5 sl Agad AlSa gl i (s AT A
gad W liely Lgde o) gt il Jals ey L asil) g Al sl 4pul) clagieal) dllics i
p Uil iy 5o 3 Anpugl 4gadl aladic) Ulla ilad Ga @l 881 Jifiua) 5 Gupal) co gibiall ASilal

o e i L e gy Sile S8 (e B aaall Al

ol A il Bale) Aiyh 5 4gilh a8 A8l 30k e Cheswick g Bellovin 4,58 ki dpaal (s
Adasgl dgal) aladicd cpe aal) g Gl cliles dpagad Gpuad o seluia

K e S o cbgise s cpboh ol Sl g Aapas) Agal pladid (e aad) e Baaal) £ua) sA) Jariv
Lagilily (AaelB o Maial) dpadlua Leguany ey (g 55 38 (JUial) Ja (o . LgaS ey g jal) i)
Ay gy e AN A SAL paad) G) o el gAY dgall 5 i giall claliuall (e aal) o 508l aa
0% Aiaal) clagleal) o a5 A8 idall bl sasld) Jedally A) Agall 268 188 (A laad) 0 2gd ciaraal)

Mg i) Ay) il glaal) gkl

Chapter 1

Introduction

1.1 Overview

The basic reasons the companies and partners care about information systems
security are that the information of customers and clients needs to be protected against
unauthorized access for legal and competitive reasons; all of the information that are
stored and referred to must be protected against accidental or deliberate modification and
must be available in a timely fashion. Finally, the poor security practices allow damage
to systems, it may be subject to criminal or civil legal proceedings; if the negligence
allows third parties to be harmed via compromised systems, there may be even more

severe legal problems.

When information is read or copied by someone not authorized to access, the result is
known as loss of confidentiality. For some types of information, confidentiality is a very
important attribute. Examples include research data, medical and insurance records, new
product specifications and corporate investment strategies. In some locations, there may
be a legal obligation to protect the privacy of individuals. This is particularly true for
banks and loan companies; debt collectors; businesses that extend credit to their
customers or issue credit cards; hospitals, doctors’ offices, and medical testing
laboratories; individuals or agencies that offer services such as psychological counseling

or drug treatment; and agencies that collect taxes (Pesante, 2008) .

Information is a fundamental human right and a cornerstone of a democratic society.
It lays at the foundation of the rule of law, the secret ballot, doctor-patient confidentiality,
lawyer-client privilege, the notion of private property, and the value our society places on
the autonomy of the individual. With the development of new information and
communication technologies, the ability of the state and the private sector to collect,
record and "mine" personal information has grown exponentially. As early as 1996,

Bruce Phillips, the Privacy Commissioner of Canada, warned, "We are in fact buying and

selling large elements of our human personae. The traffic in human information now is
immense. There is almost nothing the commercial and governmental world is not anxious

to find out about us as individuals."

Security is a very big issue in networking and it was only interests the military, but
the Internet changed all that everything can be done in the real word it can be done
on the internet: conduct a private conversation , keep personal papers , sign letter and
contracts , vote , publish personal documents, payment and bank transactions, but all
of these required a security. Computer security is a fundamental to enabling the
technology of the internet. The limits of security are the limit of Internet. The lake of
security can produce: loss of customers, damage to brand and loss of goodwill (Schneier,

2005).

People have attempted to hide certain data/ information that should be kept private
by substitution of the information parts with numbers, pictures and symbols; this
introduction on the encryption history highlights the chronology of Cryptography
throughout the previous centuries. Humans were interested in encryption or protecting of
their private messages for different reasons. For example, the Assyrians have been
interested in protection of their pottery manufacturing trade secrets. Also, Chinese have
been interested in protection of their silk manufacturing trade secrets. Moreover,
Germans have been interested in protection of military secrets (using their Enigma

machine which was famous). (SANS,2001).

Information security and privacy is a very important issue for any organizations and
companies especially when there are sharing the data between them. It is necessary when
there are two or more parties that they do not trust each other and they share data between
them. For example if there are two intelligence agencies that share the data and they
wish to let each party to query the other databases without disclosing the query and know

what the other is searching for specific data (Bellovin and Rescorla , 2005).

Sometimes it is needed to store critical data on such untrusted server of database.

Song, Wagner and Perrig have obtained a way that searches for a word that is existed in

an Encrypted textual document. The search speed has a linear property in the size of

documents (Doumen et al, 2004).

Cryptography is considered as the fundamental tool of the information security.
There were many techniques and algorithm were had been used in the past in order to
make their message an ambiguous (meaningless) in order if their messages went to the
wrong hands, they will not understand anything. There are many types of cryptography

whereas if they are classical types or modern types (Stamp, 2006).

1.2 Problem Statement

Bellovin and Cheswick published a paper titled" Privacy-Enhanced Searches Using
Encrypted Bloom Filters" and focused on the third party problem. They proposed an
algorithm to enhance the privacy and eliminate the third party. They used the hash
functions to hash the queries and used the bloom filters. The type of encryption that used
in their research is Pohlig-Hellman encryption. A Bloom filter is also used in their
research and shows how it's a very efficient way to store information about the existence
of a record in a database. They measured the performance of their suggested system by

two factors:

1- The speed of Pohlig-Hellman encryption

2- The ability of a site to rapidly search many Bloom filters.

Third party problem shows in the privacy and it's always a sensitive position because
it's the controller and it has all the secret of the agency or company and no one can send
any data without its permission because it has all the keys between the sender and
recipient. Third party is used in many applications nowadays except any program

authored by Microsoft is a first party application.

This research will develop the Bellovin and Cheswick's algorithm in-order to
enhance the privacy of search process by adding new features. The reason behind this
developing is making the query ambiguous and never can see what the original query by
the owners of the database and without using the third party by using two key in the
encryption process. At the end of this research, the new algorithm will be implemented
and check the query at both side and calculate the spent time of the search process in the

shared database.

1.3 Objectives
1.3.1 Study Aim

The main aim of this project is eliminating the third party in the middle. The client
has no knowledge about database collection stored on server side and the server has no

knowledge about the query words.

1.3.2 Study Objectives
Eliminate the third party.

¢ Implement the RSA algorithm.

e Calculate the collision rate.

e (alculate the search time query.

1.4 Study Significance

The significance of this study is to establish a model for how to search on encrypted
data without including any third party, the main aim from this project is to query server
database without disclosing the query and without knowing server key. RSA algorithm
will be used depending on Private and Public key in order to encrypt and decrypt the
query. There are also three different hash functions which will be used to represent all of
the words that are used. The reason behind use three different hash functions is building a
bloom filter on the server side. In this project there will be a generator which is used to
generate random numbers for dummy words on the client side. Implementation this
project will show the collision rate and the search time query. The work of this project
starts by allowing both the client and the server to exchange their public keys and
transferring of the query from the client to the server will be encrypted so that no third
party is involved in this operation, to prevent the server from knowing the client query we

use a technique that is built upon dummy values and reordering of the generated hashes.

Chapter 2 Literature Review

Kammuller, F. and Kammuller, R. (2009) discussed an approach for enhancing the
privacy of a database enquiry; the approach solves the problem of the privacy by
performing the search instead by not disclosing the search key. They had implemented a
demonstration of the concept in Erlang (programming language) where the feasibility of
the concept was achieved through Erlang’s high scale parallelism. With the implemented
method, the security goal of keeping the data private was achieved. The achieved results
each time were evaluated for improvements. This is a simple enough extension that
merely needs to identify new file names, or more generally Internet sites, to continue the
database enquiry. The problem with the implemented method was that an observer could
infer some information about the key from the way they continued their search because
they selected the file names from the matched search results. To overcome this, they had
to cover up their search and load all possible files referenced in the previous round.
However, for the sake of efficiency, they would only really analyze those that they know
to be interesting. For the future work, they planned to exploit a rigorous translation from
Erlang to the calculus to represent their application in a calculus that is more easily
accessible to a formal analysis, and then they suggested the use of existing formalizations
of non-interference for the calculus to demonstrate information flow security.

Shiraki, T. et al. (2009) proposed a method based on P2P (Peer to Peer) user search based
on movement records which are obtained automatically by locating detection devices. In
their research, they assumed the movement records to be treated as a sequence of pairs of
spot-ID and time and they are stored in a peer for each user. A Bloom Filter was applied
to combine all movement records for one user as a fixed length bit array. To search a user
who followed specified course, they proposed an OR/AND search method which is based
on (BFT) Bloom Finger Table which extends a routing table of a Chord DHT system to
retrieve elements using Bloom Filter. Using this method, user searches based on a
sequence of locations with or without time can be realized efficiently. Moreover, in order
to reduce the number of messages for a user search, they proposed a peer-ID assignment

for BFT based on user’s geographical foothold. The number of messages for a user

search can be reduced by this peer-ID assignment since users who visit same places are
located closer to each other on the routing table. Evaluation results of simulations showed
reduction in the number of messages compared to a naive implementation using existing
P2P retrieval method. For the future work, they suggested the overhead of constructing
Bloom Finger Table to be reduced. In addition, another experiment performed by real
users should be evaluated for verifying the effectiveness of geographical peer-ID

assignment.

Gou, C. et al. (2010) discussed the traditional intrusion detection equipments that satisfy
the application requirements hardly as the data rates of modern networks rise. Adaptive
load balancing algorithm may make attacks undetected due to flow remapping. In their
research, they proposed an algorithm that is load-balancing based on the bloom filter.
When a packet arrives load balancing module, they first determine whether the packet
belongs to a new flow. If it is, they calculate the corresponding processing unit through
the HRW algorithm with current weights and otherwise calculate the corresponding
processing unit with the weights before adjustment. To determine whether the arriving
packets belong to the old flow or not, it needs store the identifier of processed packets in
a collection for query. Tens of thousands of flows will be generated per second in high-
speed network, so the elements preserved in the collection will be very large. The
retrieval speed of linked lists and other data structures such as self balancing binary
search trees, tries hash tables, or simple arrays is getting slower and slower as the
elements in the collection increase. Compared with the above data structures, Bloom
Filters in space and time has a huge advantage. Bloom Filters storage space and insertion
query time are constant and can be well positioned to meet the application. By analyzing
the flows whose size are within the duration of 2 At can avoid flow remapping because of
weights adjustment. Experimental data they had done shows that the algorithm has the

similar load balancing effect, but with a lower rate of flow remapping.

Aimeur, E. et al. (2010) discussed the different privacy issues raised by the current SNS
(Social Networking Sites); the problem of the simple website that allowed users to create

profiles, list friends and browse through their friends list, SNS are the place for keeping

in contact with old friends and meeting new familiarities. A user leaves a big trail of
personal information about him and his friends on the SNS, sometimes even without
being aware of it. This information can lead to privacy drifts such as damaging his
reputation and credibility, security risks and profiling risks. This research paper
highlighted some privacy issues raised by the growing development of SNS and identifies
clearly three privacy risks. While it may seem apriori that privacy and SNS are two
antagonist concepts, they identified some privacy criteria that SNS could fulfill also in
order to be more respectful of the privacy of their users. Moreover, they introduced the
concept of a Privacy-enhanced Social Networking Site (PSNS) and described Privacy
Watch, their first implementation of a PSNS.

Song, et al. (2002) discussed the need of data storage on the servers in an
encrypted format in order to reduce the privacy and security risks. They described their
cryptographic schemes regarding the searching problem on the encrypted data. They
presented new techniques in the field of remote searching on the encrypted data;
searching is done using untrusted server. Moreover, they provided proofs for the resulting
crypto systems. They showed the ways of supporting functionality of searching on the
encrypted data without losses in the data confidentiality. The discussed techniques/
approaches have different crucial advantages; some of the advantages are the provable
security of the techniques; techniques provide secrecy for encryption that is provable, any
untrusted server can’t learn/reach anything regarding the plaintext only and only when
the ciphertext is given. Another advantage is providing query separation for the searches
and hence no untrusted server can learn anything about the plaintext more than the results
of the searching process. Another important advantage is providing control in searching;
hence without authorization from the user, the untrusted server will not be able to search
for any arbitrary word. Note that with the discussed techniques, hidden queries are also
supported and hence the user can ask the server (untrusted) to search for a word without
any revealing of the word to the untrusted server. The presented techniques/ algorithms
are fast, simple and introduce often no communication and space overhead, all these
advantages and properties of the presented techniques are hence practical to be used

today. Their scheme of remote searching is very flexible also and can be extended easily

for supporting more advanced search queries. It can be concluded that the presented
scheme is very powerful for constructing secure services/ searching in the untrusted

servers/ infrastructure.

Li et al (2004) discussed the ways in which well defined consistency semantics can be
provided for an untrusted server. For data security and integrity,many non-networked file
systems used cryptographic storage. They presented the first system of its type to provide
well defined consistency semantics for an untrusted server, called as SUNDR (Secure
Untrusted Data Repository). A protocol named SUNDR was published previously but not
implemented because it didn’t address the write-after-write conflicts (had no groups).
Their presented system doesn’t require replication (place of trust in machines/ servers
other than the user’s client). Replication is used in BES (Byzantine fault tolerant file
system) in order to insure the required integrity of the network file system. SUNDR
however provides freshness guarantees that are weaker than BFS. SUNDR system uses
hash trees to verify the integrity of a file block without any touch for the entire file
system. SUNDR uses also version vectors for detection of consistency violations. These
version vectors can detect update conflicts found between the replicas of a file system
and have been also used for securing partial orderings. Their presented file system
resembles timeline entanglement and reasons about the system states’ temporal ordering
using hash chains. The system presented guarantees provably fork consistency and
ensures the behavior of the server whether it behaves in the correct way or failure will be
detected upon communication between users. Measurements of their implemented system
show the performance which is usually close or even better than BFS file system. They
also gave a recommendation that with the reduction of the amount of trust in the server,
the presented system will increase both the people’s options for data managing and will

improve the security of the files as well.

Bellare et al. (2005) presented a strong definition of data privacy, and the constructions
for achieving them, experiments showed that for encryption schemes of public-key where
the encryption algorithm is deterministic; they obtained as a consequence type of

database encryption methods which allows fast search while providing provably privacy

10

which is strong. They explained one of their constructs, called as RSA-DOAEP, has an
added feature for length preserving, hence it is an example of a public-key cipher. This
was generalized to obtain a notion of searchable encryption schemes in an efficient
manner which permits more privacy flexibility to search the time trade-offs through a
technique that is called as “bucketization”. Obtained results can answer several questions
that were asked in the database community and can provide the foundations for the work
done over there. These are the schemes that permit fast search. Note that encryption can
be randomized, but there is a collision-resistant, deterministic function of the plaintext
which can be also computed from the cipher-text and serves as a tag, hence permitting for
the fast search based on comparison. Schemes that are based on deterministic encryption
are a special case where the security’s notion remains the same. The generalization’s
benefit is to permit the schemes with more privacy flexibility to search for time trade-
offs. They analyzed a scheme from the literature of the database which they called as
‘Hash-and-Encrypt’. It performs encryption of the plaintext with a scheme which is
randomized but includes a deterministic, collision resistant hash in the ciphertext. With
the presented scheme, there are some losses of privacy because of the lack of entropy in
the message space which can be compensated by increasing the probability (0) of the
hash collisions; this can be done so by truncating the hash function’s output for example.
The trade-off can be explained that the receiver gets the false positives in response to a
search query required and should spend some time to shift through them to obtain the
required true answer. This technique is called ‘bucketization’ in the literature of the
database, but the security of this technique was not rigorously analyzed previously. There
implemented scheme provides privacy only for the plaintext which have high min-
entropy. This cannot be considered as a weakness of the technique but is inherent in
being efficiently searchable or deterministic. Their claim was to provide the best privacy
subject that is possible to allow for the fast search. This may refer to no privacy in some
cases but they commented that bucketization may increase the privacy when the fields of

the database being encrypted don’t have high min-entropy.

Jonker et al, (2004) sometimes it is needed to store critical data on such untrusted server

of database. Song, Wagner and Perrig have obtained a way that searches for a word that

11

exists in an Encrypted textual document. The search speed has a linear property in the
size of documents. The paper related with expansion search algorithm of the tree type
algorithm based on the algorithm of the linear searches that are proper for XML
databases. This new approach is more efficient where it exploits the structure of XML.
And also building prototype implementations for both the tree search and linear case.
Experiments show a main development in the time of search. Nowadays the need grows
to keep stored data secure on an untrusted system. Think, for instance, of a remote
database server administered by somebody else. Suppose you need the data to be secret,
then it should be encrypted. The problem then arises how to get a response for database
query. The most obvious solution is to download the whole database locally and then
perform the query. This as known is completely inefficient. Song, Wagner and Perrig
have introduced a protocol to search for word or letter in some encrypted text. The paper
will propose a new protocol that is more suitable for handling the large scale (semi-
structured) XML data. The new protocol exploits the XML tree structure. XPath queries
can be answered secure and fast. The implementations of the prototype have been
developed during the paper for both the linear and the protocol of tree search. Those
prototypes have been used for finding optimal settings for the parameters used within the

protocols and showing the increasing in the search speed by using the tree structure.

Curtmola et al (2006) published a paper in the searchable symmetric encryption (SSE)
which it aims to allow the party outsourcing the storage of the party’s data to another
party in a private field, while it maintains the ability of the party to search over it. This
problem is discussed in this search. It has been the focus of active several security
constructions and definitions have been proposed. The authors reviewed the existing
security definitions, pointing out their shortcomings, and then they will propose two new
stronger definitions. Curtmola et al, present two constructions that can show secure
under their new definitions. In addition to satisfy a stronger security guarantees, the
authors’ constructions are more efficient than the all previous of the existing
constructions. Previous work on the SSE considered the setting where only the owner of

the data is capable of submitting the search queries. The authors defined SSE in the

12

multi-user setting and they present an efficient construction. The results of this paper are
summarized as the following:

1- Review the existing security definitions that are used in the searchable encryption. It
includes the simulation-based definition in CMO0S5 and the IND2-CKA Goh03.

2- Authors introduced new adversarial models for searchable symmetric encryption
(SSE). They refer to as non-adaptive; they consider the adversaries make their search
queries without considering the trapdoors and taking into accounts.

3- They present two constructions which the authors prove secure under the new
definitions. The first scheme will be secured only in the non-adaptive setting. On another
level, it is the most efficient SSE in the construction to date in order to be achieved. The
searches can be achieved in one of each communication round which requires an amount
of any work on the server proportional to the specific number of the documents. These
documents contain the queried word that requires constant storage on the client and linear

storage on the server.

Boneh et al, (2004) studied the problem of searching process on data which is encrypted
by using a public key technique. Consider user B who will send an email to user A an
encrypted under A’s public key. An email gateway will test whereas the email contains
the keyword “urgent". So it will route the email accordingly. On the other hand it will not
give the gateway the ability to decrypt all messages. Boneh et al defined and then
construct a mechanism that gives enable user A to provide a key to the gateway of the
email that will enable the gateway to be tested if the word “urgent” is a keyword in the
email, this will be done without learning anything else about the email. The authors refer
to this suggested mechanism as the Public Key Encryption with keyword Search. They
defined the concept of encryption using public key techniques with keyword search and

then give several constructions.

Bellovin and Rescorla, (2005) in this study cryptographic protocol was analyzed where
this protocol depends directly on the hash function. Also this study focused on SHA-1
[Nat02] and MDS5 [Riv92] which are widely used. These hash functions are usually
derived by using MD4 [Riv90]. This was known to be slight [Dob96, Dob98] for a long

13

period and thus will lead to concerns that the authors might have common weaknesses. It
is clear which it will be necessary to do this in the not-too-distant. This will result a
number of challenges for certificate-based protocols in a specific way. Bellovin and
Rescorla, analyze a number of protocols which include TLS and S/MIME that will result
change in the way of implementation the change. They explain the necessary changes
and show how the conversion that will be done, and then list what the measures that

should be taken immediately.

14

Chapter 3
Methodology

3.1 Background

This project is designed to remove the third party and enhance the privacy in the
search process by using the bloom filters. This project to be implemented will require to
design and write many functions starting with how to make a connection between client
and server. In addition, hash functions will be used in both server and client. Bloom filter
will be used to build the server’s database. The query will be encrypted and decrypted
based on RSA technique (private and public). This project will need to read many books,
journal, websites and conferences. First, the data for this thesis will be obtained by
reviewing the previous study in cryptography, bloom filters, hash functions and other
materials. The suggested algorithm required using RSA algorithm (Public and Private
Keys), bloom filters and hash functions (present the words into database).
Implementation this project will be done by using Visual basic.Net and SQL Server 2005.
Vb.net will write an appropriate to code to program all of RSA algorithm, hash functions,
adding dummy values and reorder the query. SQL server 2005 will build the server’s
database within the VB.net. The code will contain the three techniques and then the

results will be seen as the spent time of the query and the collision rate.

Figure 1 shows Bellovin and Cheswick's Algorithm (Before Development).

query by using

ot Found

15

private key of
- Tramsmission Changel | 3 I. o oarg l
' ' Server Side

Figure 1: Bellovin and Cheswick's Algorithm.

Figure 2 shows Bellovin and Cheswick's Algorithm (After Development).

16

Figure 2: Bellovin and Cheswick's Algorithm (After Development).

There are many steps will be included in order to achieve this project. See Figure 3.

Run the program

Figure 3: Design Methodology.

17

3.2 Project Implementation Requirement

Figure 4 shows an example of the suggested system.

Documestand btk l Ali(l,2.4)Can(l. 7,)

Quary (5, 12, 14)
{4, 11, 16)
Damabase (5, 10,13}

vaiues on pener fide

Afi EEry “Helin Chnar™

Hella e

:H_EHTI-; sxieulate Hath fmenon —l

Helln {6 1319 O3 11) MM Y E 111691811 15
Add durmmy value (2.0.19) (1246.13,189,18,11_15

}

Hirorder the digest qucey randemby I
(438 15 16.8.10, 1115

B F L 4281516010 11.0%) | B, EEER{IIILION T

[y DD l10f L1101 0
AG1TAE100015

'

Brmoye dumany (7 9 15)

Reopder to orzmal query

& 13 b 3 11 18

6@ 1 b R
¥ ¥

i i
1 1
P 1
] 1]
4 i
% i
fi i
T i
5 |
- 1
1| 1
11 1
121 1
[E 1
M| 1
13 i
6] 1
1 U
5] @
i[9 1]

19

Figure 4: An Example on Suggested System.

Before implementing this project, there are many criteria which will be defined such as
Bloom filters, Hash Function and RSA algorithm in order to complete the project and

suggest an appropriate algorithm to be adopted in software field.
3.2.1 Bloom Filters

Bloom filters can be defined as a structure of compact data for the probabilistic
representation to support the membership queries (i.e. queries that ask: “Is the first
element X in set Y?”). This representation in compact form is the payoff to be used in
allowing the small rate of false positives in the membership queries, which is, queries

could be incorrectly recognized an element as member of the set such as X set.

Consider that there is a set A = {a,,a.,...,a,}where n is number of elements. Bloom
filter describes the membership information of A using a bit vector V of length m. For

this, there will be k hash functions, 4, h,,...,h. Figure 5 shows the bloom filter:

Vo Vm—l
0909091907070 190%1 o o o 091701010

h(x) hy(x) hs(x) hy(x)

Figure 5: Bloom Filter.

20

The Implementation of Bloom Filters in this Project

Bloom filters represent the database of the server. The bloom filter will contain
the data that the client will search in . So the bloom filter can be considered as table
with three columns: id, enc_id and enc_num. id can be considered as pointer for each
raw in the database and each data to be inserted by the administrator will take a raw
in the table. So, if the administrator inserts data to the bloom filter (server’s data
base), the program will hash the inserted data first and then the result of hash function
will be considered as encrypted ID. The program was designed to insert the hashed
data in sequence. Figure 6 shows the bloom filter in this project as example. For
example: if the administrator inserts “HEY” to database and the result of hash
function was 94754, the program will insert new raw to database and set the value

(enc_num) equal 1. See Figure 6.

id enc_id NC_num
94429 1
94754 1

Figure 6: An Example of Bloom Filter.

Collision Rate

Collision rate can be shown in bloom filters and these criteria can be calculated based on

the following equations, (Ripeanu and Iamnitchi, 2002).

Calculating the collision rate depends on the following equations

1 \kn
Po= (1- E) (1)
Where:
n = number of primary Keys (the number of keys in this project are two).
m = size of document (number of words).

k = number of hash functions (number of used hash function are three).

And then calculate the error (Pe,) which equal

21

P (1-Po)* . (2)

Database Dictionary Feature
Database will contain three columns: id, enc_id and en_num.

The following points will show the common SQL terms and phrases

- CREATE DATABASE: this order creates a new blank database by using SQL 2005.

- CREATE TABLE: creates a new table to store database within this table (this table is
the bloom filter).

- SELECT: this command to call the database to extract that data that meet with the

required data.

- IDENTITY: to count the ID within the table that was created (steps of counting can be
specified when the bloom filter created.

- PRIMARY KEY: is a unique member which avoids the Repetition in one column (any
table created should be have a primary key).

- INSERT: to add data for the table that was created, during this order one can determine
the number of columns required to add data (such as add data for column 2).

- DELETE: to delete the data from the database when a new data will be inputted.

- FROM: specify the table that will be used to be (edit data, insert data, select data

and delete data).

- WHERE: to specify the column that will be used in search process.

3.2.2 Hash Functions
A hash function can be defined as a reproducible method of turning various kinds of
data into a small number (relatively) which it could serve as a digital "fingerprint" of the
data used in this project. Cryptographic hash functions can be used for many purposes in
the applications connected with information security, the hash function will be in this
project used to build the bloom filters. This can be done by converting all words on a

collection of documents into digital format (digital numbers).

22

Hash functions are designed to be fast and to yield few hash collisions in expected
input domains. In hash tables and data processing, collisions inhibit the distinguishing of

data, making records more costly to find.

A hash function must be deterministic. For example, if there are two hashes
generated by the same hash function they will be different and then the two inputs were

different in the same way.

Using a hash function will be useful to detect errors in transmission of the
straightforward. The hash functions are computed for the data at the sender side and then
the value of this hash is sent with the data. The hash functions are performed again the
receiving end and if the hash values do not match, this means there is an error occurred at
point during the transmission. This is process called a “redundancy check”.
Cryptographic grade of hash functions is used in common as integrity a check values to

identify files and verify their integrity.
The Implement of Hash Function in this Project

Hash function had been used in both client and server in this project. Hash function
had been used to provide the security by presenting all data in digital format neither than

string format.

Hash function code is built function in VB.net software and the following code is

applied in this project in order to hash the data in both client and server:

numHashedTxtl = objHash.Hashl (arr(i))

If numHashedTxtl < 0 Then

numHashedTxtl = numHashedTxtl * -1
numHashedTxtl =

Strings.Right (Convert.ToString (numHashedTxtl),
Convert.ToString (numHashedTxtl) .Length - 5)
Else

numHashedTxtl =

Strings.Right (Convert.ToString (numHashedTxtl),

Convert.ToString (numHashedTxtl) .Length - 5)

End If

23

The technique that is used in this project is converting the inserted text to numbers
by built functions in the VB.net environment. The length of each hash value is five digits.
So, if the result of two hash value exists the program will not be added to the data base in

the server side, the program will not add a new line (new ID).

3.2.3 RSA Algorithm

This algorithm was developed in 1977 by three students Rivest, Shamir, and
Adleman. This algorithm is the most commonly used authentication algorithm and
encryption, the mathematical details of the RSA algorithm used in obtaining public and
private keys. (Rivest et al, 1987) The algorithm will involve multiplying two large
prime numbers and then through the additional operations deriving a set of two
numbers which constitutes the public key and the private key. Both the public and the
private keys will be needed to be used in the encryption and decryption but the private
key is known by the owner that ever needs to know it. While using the RSA algorithm,

the private key will never need to be sent across the Internet. Table 1 shows the

functions of public and private key (Davis, 2003).

Table 1: Public and Private Keys Functions.

To do this Use whose Kind of
key
Send an encrypted signature Use the Private
sender's key
Send an encrypted message Use the Public
receiver's key
Decrypt an encrypted signature (and Use the Public
authenticate the sender) sender's key
Decrypt an encrypted message Use the Private
receiver's key

The basic idea of this encryption is multiplying two prime numbers together. So, it is
simple to perform a multiplication process for two numbers together and it will be very

simple within computers. But it will be very difficult factoring the numbers.

24

Example:
If someone is asked to multiply two number together (85614 and 34987), he can use

the calculator to multiply and find 2995377018. But factoring number (reverse problem)

is much harder.

If the given number was, it’s very difficult to factor the number and find they are
85614 and 34987. The computer can perform the factoring process quickly by trying the
most of the possible combinations. The computer firstly, has to check something that is of
the order of the size of the square-root of the number to be factored. So the square root of
2995377018 is 54730. Computer will not take a long time to try out 54730 possibilities
but this for ten digits. So, if the result of multiplied two numbers together is 400 digits
and the square-root will be 200 digits and it’s needed for a very long time (lifetime of the
universe enough for 18 digits). For example if a computer can perform a one

million factorizations per second, in the universe’s lifetime it could

check 10** possibilities. But for a 400 digit, there are 10°* possibilities.

RSA encryption works as finding two huge prime numbers, p and (100 or
maybe 200 digits each). P and q have to be secret because they will be the
private key. P and q will be multiplied (N=p*q).

The Cracking of RSA Algorithm
RSA algorithms varied based on the size of keys (number of bits). Many of RSA had
been cracked such as 512bit and 768-bit RSA (Kleinjung, 2010).

In March 2, 2010, The Kaspersky Lab Security New Services published an article
titled “RSA 2010: Experts Expect Several Ciphers to Be Cracked Soon”. This article

discussed that the cryptographers are expecting several cryptographic systems that

are in use today will be broken in the near future. Rivest (one of the inventors of the RSA

algorithm) said in the Cryptographers Panel session at the RSA Conference, he expected

25

that RSA 1024 will be broken within a decade. Rivest mentioned that the people should

start moving to 2048 soon (Fisher, 2010).

Table 2: Advantages and Disadvantages of Using RSA.

1- The primary advantage is
increased security and
convenience while the private
keys will never need to be
revealed or transmitted to anyone.

Advantages
Disadvantages

2- RSA systems can provide a
digital signature which means the
message cannot be repudiated.

Speed is the most disadvantage of
using RSA. Speed of RSA algorithm
depends on many criteria:

1- The size of Public and

Private Key.
2- Multiplication Techniques:
Fast techniques such as FFT
(Fast Fourier Transform) can
perform the multiplication

process fast.

Table 3: Bloom Filters VS RSA Applications

Bloom Filters

RSA

Counting filters: it’s used to provide a way to
implement the delete operation on a Bloom filter
without involving any recreating process for the

filter afresh.

Send an encrypted signature

Data synchronization: Bloom filters that could
associate a value with each element that had been

inserted, implementing an associative array

Send an encrypted message

Bloomier filters: used in the association a value

in the each element which had been inserted.

Decrypt an encrypted signature (and
authenticate the sender)

Compact approximators: it is used in the lattice-

based of Bloom filters in general.

Decrypt an encrypted message

Stable Bloom Filters: used as a variant of Bloom

filters in the streaming data. The main idea is

26

giving the ability to the bloom continuously
information to make room for the recent elements
when there is no way to store the entire history of

a stream.

® Dummy Values
The point of adding dummy values in the client’s query is making the query
ambiguous and the server has no idea what the client are looking for.
For example if the client query the server by “hello”, the program will have this word and
the server can do this too. So, where is the privacy here??!! .
Dummy values plays a very important role in this project. The client will add a
dummy value in specific order to be removed correctly after the server sends the results.

The following example shows how the dummy value will be added to the query.

Client query: “Hello”

Hello
digest by calculate Hash function

v

Hello (6, 13,19),

'

Add dummy value (2, 9, 15)

’

Reorder the digest query randomly
(2,6,13,9,19, 15)

From the example it can be seen the query became two words rather than one, so the

server will think that the client searches for two words not one.

27

3.3 Flowchart shows Bellovin and Cheswick's Algorithm (After Development).

28

3.4 Design and Implementation Screens

This project will require using two types of software to be implemented: VB.net
and SQL server 2005. Vb.net will be used to program the client and server screens and

SQL server will be used to create the server’s database.

The program has two main sides: server and client. See Figure 7.

s Wi]

Cliant Server

Closs

Figure 7: Client and Server Options.

3.4.1 Server Screen

The server page has many functions and the data base can be built through it. At the
beginning the server will be empty until the server uploads file in text format or type the
text that will present the server. This page contains a textbox and three buttons. Textbox
allows the user to insert a text to the server’s database. Figure 8 shows the server’s

screen.
Save Button: this button will add the test to the server’s database.
Clear Database: this button will clear all the data in the database.

Close Button: this button will close the program.

29

— =" —

el Oyl bill fi) Aagls Fadi Eshtaiwi
MIDOLE LAST UNIVERSITY FOR GRABUATE STUSKES

\ Privacy-Enhanced Search Using Bloom Filters

| CoerDatsbase || Save || O |

Figure 8: Server Screen.

If the administrator (person who is responsible to add data to the database) clicked
the save button and the textbox is empty, the program will present a message box that

tells the administrator there is no data can be added to the database. See Figure 9.

30

g heEneE :3

| Muwﬁupuh_qﬂgj_uug Fadi Eshtaiwi

MIDDLE EAST UNIVERSITY FOR GRADUATE STUDIES

Privacy-Enhanced Search Using Bloom Filters

priEmeryp

Fiesse rperl Diata |

=

 Oewlisboss | [sowe | [Dose

Figure 9: Insert Data Message Box.

3.4.2 Client Design

The client can query the data base through writing the words in TextBox and clicks
Search Button. The program will perform six steps beginning with hashing the query, add
dummy values, and reorder the dummy values plus the hash values of the query and then
two encryption processes with different keys (Public and Private). Figure 10 shows the
client interface. It also contains Result box. This box contains two rows: Result and

status. It will show the result if the query is found or not.

31

25 Clent - e e NN
WLt Ol aiplb gl dd iy Fadi Eshtaiwi

MIDDLE EAST LINIVERSITY FOR GRAGUATE STUDiES
Privacy-Enhanced Search Using Bloom Filters
Sanrch fnr:
Fomdy
| om 2

| semsch | | oom

Figure 10: Client’s Interface.

If the client queries the server’s database, the program will show message box telling the

client there is no query which will perform on the server’s database. See Figure 11.

32

=
* s -

ot OLslsl bl fhiid Ay Fagi Eshtaiwi
MIBDLE EAST UNIVERSITY 08 GRABUATE ST

Privacy-Enhanced Search Using Bloom Filters

=eprch tor
'_ -
prEncrypt
P
ot lesie Insert Dale
e

| Search | | Ocee |

Figure 11: Message Box tells the Clients there is no Query.

33

Chapter 4

Test and Evaluations of Application and Examples

The program will be tested in order to check if the program is correctly designed and
programmed. The test process will require creating database in order to allow the client
query the server’s database for specific words. While the client queries the server’s

database, it must type the word that is looking for in the textbox and then click search.

Search button presents the whole program. If the client clicked in the search button

the program will act like the following:

1- Hashing the client query.

2- Add dummy values.

3- Reorder the query.

4- Encryption the query (public key)
5- Encryption the query (private key).

The test process will include each main process in the project.
4.1 Test the Hash Function Process

At the beginning, the program will hash the query. Figure 12 shows how the program
will hash the “Fadi” word for one time. The type of the hash function that is used is

Object.GetHash() and this is a built function in Microsoft visual basic.net (VB.net).

Fadi
¥ E L]
‘
; Word [
(= 4 |

Figure 12: The First Hash Value of Fadi word.

It also will hash “Fadi” for second time and the result shown in figure 13.

P e Ll

Fadi

il

L

Figure 13: The Second Hash Value of Fadi word.

34

35

The program will hash “Fadi” for the third time as shown in the Figure 14.

Sepshtm

Fagi

[pricserpt ﬂ

L]

Figure 14: The Third Hash Value of Fadi word.

Table 4 shows the result of hash functions for three times with ‘“Fadi’> word.

Hash functions Results
1** Hash function of “Fadi” 95584
2"! Hash process of “Fadi” 95212
3"" Hash process of “Fadi” 94884

Table 4: Hash Function Results.
4.2 RSA Test (public and private).
Before the client sends the query to the server, this query must be encrypted by two

different keys (public and private). The input of RSA function will be as the following:

Hash values + dummy values= input of RSA function. RSA function consists of
formula which applies many procedures to get the result. Figure 15 shows the result of

encrypting process of “Fadi” by using server’s public key.

36

T

<

[grlEnor
I
Aot 4 Rt 183 B -GEHP

UCwh " DalrME-SEBIB0 A ~[BFurRd + ~Jarpt ST ekt A5V TSP A& ¢ LAB
e MW e = G e 200003l LT

Figure 15: Result of Encrypting “Fadi” word by Using Sender’s Public Key.

Another encryption must be tested in order to ensure that the query is encrypted two
times by two different keys. Figure 16 shows the result of encryption the query for

second time by using client’s private key.

Searrnlar

n

PERGTIPE =

AT AR A8 5 o v g UL O i S BF (P
(= ATIOR 0 RESEF 0 30 opu N A e B H L E-DpSUTS 0% o%n3 U0 0

Figure 16: The Result of Encryption the Query for Second Time.

4.3 Test of the Whole Program

The whole program will be tested in order to check the program meets the
proposed objectives and working correctly. Before starting with testing the program,
it’s needed to create the server’s database. This test will be implemented by creating

the server’s database by inserting data that represents the data which the client will

37

query. The database contains “Fadi” but it doesn’t contain “Eshtaiwi”. Figure 17

shows the server’s database.

it ene_ id EE_MLUm
b i 45584 1
U512 1
bt 1
b 4 s 1
i TE 1
N i

Figure 17: Server’s Database.

The client will query the server’s database by searching in the database on “Fadi”
word and the results were perfect. Figure 18 and 19 show the result of query the

server’s database by “Fadi” word.

38

s Clisn aa o 4%
LI Ol il e J Al Facli Eshtaiwn
MIDDLE EAST UNIVERSITY FOR GRADUATE STUBIES
Privacy-Enhanced Search Using Bloom Filters
Saxch for
Fadi Eshtaiwi -
Yo Hota
— | seorch | | (Ciose
= = —_— — _—

Figure 18: Searching on the Server’s Database about “Fadi Eshtaiwi” word.

39

o Tl - l!ﬂ_ - e

WO sl et il Fadi Eshiaiwi
MIBGLE EAST UNIVERSITY FOR GILADRIATE STUDWES

Privacy-Enhanced Search Using Bloom Filters

T4 Vi

Fadi Eshtaiwi

Srmua

ol Tl

Figure 19: The Result of Query Server’s Database on “Fadi Eshtaiwi”.

The client also can query the server’s database about “Fadi Eshtaiwi”, the server’s
database just contains “Fadi Eshtaiwi” but it doesn’t contain “MIDDEL”. Let us see

how the program will act. Figure 20 shows the result of “Fadi Eshtaiwi MIDDEL”
query.

40

=i Clwea = & 5 353 5= = = [m——|
WOl sipub gl d b iissls Fadi Eshtaiwi
MIBDLE EAST LIMTYERSITY FOR CLARUATE STIOIES

Privacy-Enhanced Search Using Bloom Filtars
St N

Fad| Eshtaiwi MIDDLE

(R I
Witved St
| wil Famirwl
= LT Foi_rwl
BT & B & gl
s B e
Figure 20: The Result of “Fadi Eshtaiwi MIDDLE” Query.
Inquiry by words Results
Fadi Found
Eshtaiwi Found
MIDDLE Not Found

Table 5 : Results of inquiry three words of the database.

41

4.4 Critical Evaluation

This type of evaluation is concerned with the ability to critically evaluate the

information. In this project, PROMPT approach will be used to critical evaluation of

information which refers to Provenance, Relevance, Objectivity, Method, Presentation,

and Timeliness.

1-

Provenance: this project depends on many ideas in the enhancement of privacy
field. Many researchers studied how to enhance the privacy by using bloom filters
and hash functions. Bellovin and Cheswick (2005) enhanced the privacy by using
bloom filter and hash functions. This project developed this idea by many
features starting with the dummy values and the reordering process of query.

There are many sources used in this project such as RSA code.

Relevance: the quality of information that is used in this project is high level
quality because all information was gathered from scientific papers and
conferences. It also include the date of publishing thee papers .All requirements of
this project are clearly identified. In addition, all information is related to the
subject of this project (enhancement the privacy for search process) and the aim

that is trying to do (remove third party).

Objectivity: this project met its objectives and they are followed correctly in
order to meet the main aim. All information doesn’t conflict with each other and

they are tending to implement all the requirements.

Methods: the methods applied in this project are “bottom-up approach”, where
the project is divided into sub system and each one will do specific function such
as the hash function that will hash the query in both server and client. The method

was implemented as it was deigned and it given the supposed results.

42

5- Presentation: all information in this project was presented in clear structure
based on the project-handbook. Presentation includes font color, font size, font

type, images and diagrams.

6- Timeliness: it is concerned with the date of producing or publishing the data in

this project and it depends on the information need.

3.5 Critical Evaluation of This Project:

This project met the proposed aim which is removing the third part and enhances the
privacy in search process. There are many activities that were followed in order to
achieve the main aim. They include many processes beginning with gathering data
and revision of the literature review in this field. All requirements are fully defined
and then designed to be implemented by using Microsoft VB.bet and SQL server. The
result of each process was tested to ensure that every function was built correctly and
gives the specific outputs. The entire system was tested with many quires and the

results were correctly.

43

Chapter 5
Results

This project is designed to implement a new suggested system in order to remove
the third party by using two programs: VB.net and SQL server 2005. In this project,
client could query server’s database and search for anything without knowing anything
about what is the client is looking for. Hash function is used to represent all the data in
both client and server. The client queries the database for “Fadi Eshtaiwi” and the results

were found for “Fadi” and “Eshtaiwi” and not found for “MIDDEL”.

Microsoft VB.net has many built functions that have been used in this project.
Object.GetHash is one of these built functions.It was very a useful function because it
was used in both client and server. VB.bet also has the ability to communicate with the
SQL server 2005 in order to build the server’s database. Con.ConnectionString is used to
make this connection.Classes in the VB.net were used to build the common functions
that are used in both client and server such as the encryption, decryption and hash
functions. Calculating the spent time of query for Fadi is done in three ways and see how
the size of document has effects on the time.The following table shows the query’s spent
time. The results of spent time for querying multiple size of documents as shown in Table

6.

Table 6: Query Time.

Search in Spent time
200 words 00:00:26
400 words 00:01:36
1000 words 00:02:50

Searching for “Fadi” in document with size 200 required for 26 milliseconds to find
it. While searching for the same word in document with size 1000 words required for two
seconds and 50 milliseconds. So, while the document is increasing, the required time for
query will increase too much. Adding to the server’s database too much of data may

occur down in the server. So, the program is designed to prevent the copy and paste from

44

any document into the server in order to enhance the security. The collision rate can be
shown in the bloom filter but in this project there were no collisions because there were
three hash functions which are used in this project. So, the database is built in a way to
prevent to duplicate the hash value. So, it’s impossible to find two words that have the

same hash values in the database.

The results of this project will be as result of querying the server database and the
query is about words generated by the client. This project aimed to enhance the privacy
of searching process between the two parties by using bloom filters. The client’s query is
*“ Fadi Eshtaiwi ”, applied on this project in order to check that the system working as it is
designed. The database has the following data: search, using, bloom, filter and “Fadi”.

After decrypting the query at the server’s side, the query will consist of:

1- Hash values of the query. Figure 21, 22 and 23 show the result of hashing “Fadi”.
Figure 24, 25 and 26 show the result of hashing “Eshtaiwi”.

Lammnir
Fagi
PriEfrppt — 2
— PRECE]
b o =1]
i [a] F
o |

Figure 21: The Result of First Hash Functions of Fadi.

45

allPE il |

H—.-ﬁ_-
‘Wit
Figure 22: The Result of Second Hash Functions of Fadi.
Fadi :
¥ E L]
E"'""'"]
| Woed [
= I

Figure 23: The Result of Third Hash Functions of Fadi.

46

Eshtaiwi

|

Figure 24:The Result of First Hash Functions of Eshtaiwi.

W [hest =
WLl sl sl o d e Fag Eshiaiw
HIBGAE EAST UNIVERSIT', FOR GUAGUATE STigiit '
Privacy-Enhanced Search Using Bloom Filters
Gtech S
Eshtaiws

ii

Figure 25: The Result of Second Hash Functions of Eshtaiwi.

47

Figure 26: The Result of Third Hash Functions of Eshtaiwi.

Table 7 shows the result of hash functions for three times with “Fadi’’ and
“Eshtaiwi’”’ word.

Table 7: Hash Function Results.

Hash functions Results
1** Hash function of “Fadi” 95584
2"! Hash process of “Fadi” 95212
3"Y Hash process of “Fadi’” 94884
1°' Hash function of “Eshtaiwi” 45965
2"! Hash process of “Eshtaiwi” 45135
3"" Hash process of “Eshtaiwi” 44573

2- Dummy Values and Reorder the Query

The query will contain also the dummy values and then the program will reorder the
query. So the result if the query that will enter the server’s database and search on it is
shown in the figure 27 and 28. Figure 27 shows the dummy values added to the query
after the reordering process of “Fadi” and Figure 28 shows the dummy values added to

the query after the reordering process of “Eshtaiwi”.

48

Privacy-Enhanced Search Using Bloom Filters
Sewiior

Fadi Eshtaiwi

ik

Figure 27: Hash Vales and Dummy Values after the Reorder Process of “Fadi” Query.

Bmanly lod
Fadi Eshtaiwi
PPt
i |
P " Ealicr-Fut ERIMECERTE L] |
| il b
= il

e | ;

Figure 28: Hash Vales and Dummy Values after the Reorder Process of “Eshtaiwi”

Query.

49

Table 8 shows the results of reordering process for query “Fadi” and “Eshtaiwi”

added to dummy values.

Table 8: Reordering Results.

Reordered hash function with dummy values Result
“Fadi” + Dummy values 549558454952129488454
“Eshtaiwi”’ + Dummy values 544596654451354457354

The server will not know what the client is searching about because the dummy
values and reorder process will make the query ambiguous. Sever will perform the search

process by dividing the query into five digits and return 1 if exists 1 or O if doesn’t exist.

The result of querying “Fadi Eshtaiwi Middel” shows in Figure 29.

i Ll = - = ____ it

WOl shailh_aglidy b Nissls Eadi Eshiaiwi
MIGDLE EAST WUNTYERSITY FOR GLASUATE STUME

Privacy-Enhanced Search Using Bloom Filtars
S ity Mo

Fadi Eshtaby MIDDLE

Wihoed Sartum

e [-_i_lrgn_i_ p=_ 3 |

Figure 29: The Result of Querying Fadi Eshtaiwi Middle.

50

Collision Rate

Collision rate can be calculated in this project based on equation (1) and (2)

Py= (1- ;)"” (1)
P, (1-P) . 2)

Where:

n= number of primary Keys (the number of keys in this project are two)
m= size of document (number of words)

k= number of hash functions (number of used hash function are three)
And then calculate the error (Pe,r) which equal

The collision rate will be calculated for m=10 words as follows:

Po= (1- -)*?= 0531441

P, (1-0.531441)°=0.0169

Equation 2 and 3 are implemented in the project and the results are shown in figures 30,
31 and 32.

Figure 30 shows the collision rate at the size equal 10 words.

W)

priEncrypt e =

D.016930065541421 4

(3] 4

L™ -

Figure 30: Collision Rate at 10 words.

Figure 31 shows the collision rate at the size equal 30 words.

el e ol B Bl Rl S F i
L=
'

i priEncrypt -~

0 AR R A O TR

oK

L

Figure 31: Collision Rate at 30 words.

Figure 32 shows the collision rate at the size equal 40 words.

prbnonypt EH

G0 R FEML IR0

o |

- -

Figure 32: Collision Rate at 40 words.

Marks of enhancing the privacy in this project .

First Mark:

Adding the dummy values:

51

This feature will enhance the privacy by making the server unable to know what the

client is looking up. This will be useful if there are organizations in their databases.

Second Mark:

Reordering the process:

After hashing the query and adding dummy values, the query will be reordered in order to

make the query is meaningless when it arrives to the server’s database.

The previous two marks are shown in Figure33.

Seareh for

Fadi Eshtaiwi

-
prej ERcryt ﬂ
SEIESEARRO52] 2R AER

|ieay s,

Wifora

"'-2.-|- | m I|

Figure 33: Marks of Enhancing the Privacy in this Project.

5.2 Code Discussion

52

This is the first code form will appear to the user in this project. There are three buttons

in this interface. Client button was programmed by Button1_Click object to link the user

to the client form.

Server button was programmed by Button2_Click object to link the user to the server

form. Public Class frmMain

Private Sub Buttonl_Click(ByVal sender As System.Object,
System.EventArgs) Handles Buttonl.Click
Dim frm As New frmClient
frm.Show ()
End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
System.EventArgs) Handles Button2.Click
Dim frm As New frmServer
frm.Show ()
End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
System.EventArgs) Handles Button3.Click
Application.Exit ()
End Sub
End Class

ByVal e As

ByVal e As

ByVal e As

53

Client Server

: Close

Figure 34: Interface Buttons.

The function of Close button (Button3_Click) will exit from the application and stop for

run process.

Client Code

The main idea to write an appropriate code to program the client is starting with design
the client’s interface.

= Client F==ni % —— - __.-—-g. F = 1 _m
Ll Ol wiplth wgBd d NAsgds Eodi Eshtaiwi
MIDDLE EAST LINIVERSITY FOR GRAGRIATE STURES

Privacy-Enhanced Search Using Bloom Filars
Smprmifnr

o Tamn

Figure 35: Search Button.

54

In this interface, search button (btnSearch_Click) and when the client clicks the search

button many procedures will be executed.

Public Class frmClient
Dim objHash As New clsHash
Dim dumValues(3) As Integer

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Me.Close ()
End Sub

Private Sub btnSearch_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnSearch.Click

The following code will check if the client clicked Search button without inserting any

word. If the user inserts data, the following code will be executed. Many variables and

classes are identified to be used in many functions in the client side.

If txtClient.Text <> "" Then
On Error Resume Next
Dim cipherX As String
Dim objCheck As New checkEncData
Dim resp As String
Dim returno As String
Dim result As Boolean

pBar is identified for the searching time process, the default value of this object is
zero. This bar will start loading when the user clicks on search button.

| Search | Cose |

\

\

pBar.Value = 0

If txtClient.Text <> String.Empty Then

55

Dim line As String = txtClient.Text

Dim arr () As String

arr = Split(line, " ")

Dim arrLength As Integer = CInt(arr.Length)
Dim numHashedTxtl (arrLength) As Integer
Dim numHashedTxt2 (arrLength) As Integer
Dim numHashedTxt3 (arrLength) As Integer

stlbl.Visible = True
pBar.Visible = True
stlbl.Text = "Searching..."
pBar .Minimum 0
pBar.Maximum = 100

For i = 0 To (CInt(arr.Length - 1))

pBar.Value = pBar.Value + 10 * (i + 1)

ThkkhkhkkhrkhhhkhhhhkhhhAhkhAkhrkhkhhkhrhrhkhhkhkrhkhkhkhkhkhhkhrkhhkrxx

'** Get Hashl

LIS b b R b 2 S Sh b b I S SR b i S g S b i i S Sh b b b S b I b S SR b b S g b b o 4
There is an array; the inserted data will be set in this array as string. The array will be
the input of the hash procedure. There are three hash functions in clsHash.vb class
(clsHash.vb will be explained later). Each word will pass through these hash functions.

Each hash function various than the other one (each hash hash function has various

code)

numHashedTxt1l (i) = objHash.Hashl (arr(i))

Through execution of this code, there was a problem with the first digit of the hash
value. This problem is shown when the first digit is equal zero and the program will

drop it. So, this problem is solved by replacing the zero to 9 if the first digit is equal 0.

numHashedTxtl (i) = CInt (CStr (numHashedTxtl(i)) .Replace("0", "9"))

The result of the hash function could be negative and that’s not logical. The

following code checks the result of hash function and if the hash value is less than

zero, the hash value will be multiplied by -1.

If numHashedTxtl (i) < 0 Then
numHashedTxtl (i) = numHashedTxtl (i) * -1
If numHashedTxtl (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl (i) .ToString.Length - 1
numHashedTxtl (1) =
CInt (CStr (numHashedTxtl(i)) & "1")
Next
End If

numHashedTxtl (i) =
Strings.Right (Convert.ToString (numHashedTxt1l(i)),
Convert.ToString (numHashedTxtl (1)) .Length -
(Convert.ToString (numHashedTxtl(i)) .Length - 5))
Else
If numHashedTxtl (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl (i) .ToString.Length - 1
numHashedTxtl (i) =
CInt (CStr (numHashedTxtl(i)) & "1")
Next
End If
numHashedTxtl (i) =
Strings.Right (Convert.ToString (numHashedTxt1l(1i)),
Convert.ToString (numHashedTxtl (i)) .Length -
(Convert.ToString (numHashedTxtl(i)) .Length - 5))

End If

Thkhhkhhhkhhkkhrkhhhkhhdhhbkhrkhkhhkhrhrhkhhkhkrhkhkhkhkhkhhkhkrkhhkhx*k

'** Get Hash2
Thkkhkkhkhhkhkhhhrhhhkhrhkhkhhrkhkkhkhhhkhkhkrhkhkhkhkhkhhkhkrhkkhkhkhhkkhhhhxkkx
numHashedTxt2 (i) = objHash.Hash2 (arr(i))
numHashedTxt2 (1) =
CInt (CStr (numHashedTxt2(i)) .Replace("0", "9"))
If numHashedTxt2 (i) < 0 Then
numHashedTxt2 (i) = numHashedTxt2(i) * -1
If numHashedTxt2 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2 (i) .ToString.Length - 1
numHashedTxt2 (1) =
CInt (CStr (numHashedTxt2(i)) & "1")
Next
End If
numHashedTxt2 (1) =
Strings.Right (Convert.ToString (numHashedTxt2(1i)),
Convert.ToString (numHashedTxt2 (i)) .Length -
(Convert.ToString (numHashedTxt2 (i)) .Length - 5))
Else
If numHashedTxt2 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2 (i) .ToString.Length - 1
numHashedTxt2 (i) =
CInt (CStr (numHashedTxt2(i)) & "1")
Next
End If

56

numHashedTxt2 (i) =
Strings.Right (Convert.ToString (numHashedTxt2(1i)),
Convert.ToString (numHashedTxt2 (1)) .Length -
(Convert.ToString (numHashedTxt2 (i)) .Length - 5))
End If

Thkhhkhhhkhhkkhhkhhhkhhbhhbhrkhkhhkhrhrhkhhkhkrhkhhkhkhkhhkhrkhhkhx*k

'** Get Hash3
LIRS b b S A b b b b b b a2 b b b S b b b S b b b S b b I 2 b b S S b b b db b b b a2 g
numHashedTxt3 (i) = objHash.Hash3 (arr(i))
numHashedTxt3 (i) =
CInt (CStr (numHashedTxt3(i)) .Replace("0", "9"))
If numHashedTxt3 (i) < 0 Then
numHashedTxt3 (i) = numHashedTxt3 (i) * -1
If numHashedTxt3 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3 (i) .ToString.Length - 1
numHashedTxt3 (1) =
CInt (CStr (numHashedTxt3(i)) & "1")
Next
End If
numHashedTxt3 (i) =
Strings.Right (Convert.ToString (numHashedTxt3(i)),
Convert.ToString (numHashedTxt3(i)) .Length -
(Convert.ToString (numHashedTxt3(i)) .Length - 5))
Else
If numHashedTxt3 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3 (i) .ToString.Length - 1
numHashedTxt3 (1) =
CInt (CStr (numHashedTxt3(i)) & "1")
Next
End If
numHashedTxt3 (1) =
Strings.Right (Convert.ToString (numHashedTxt3(1i)),
Convert.ToString (numHashedTxt3(i)) .Length -
(Convert.ToString (numHashedTxt3(1i)).Length - 5))
End If

Next i

57

Thxkhhokhkhhkhhhhkkhhhhhkhrkhhdhkhhbhhbhrhkhkhhkhkhhkhkhkhkhkrhkhkhkkhx*k

'**% Add dummy values

Thxkhhokhkhhkhhhhkhhhhhkhkrkhhdhkhhhrhkrhkhkhhkhkhhrhkhkhkhkrhkhkhkhkxkhx*k

The query after hashing process, it’s needed to generate dummy values. The

following code will generate three values and each value is two digits. The

result of dummy value will be saved to dumValues array.

For ¢ = 0 To 2
Dim rndl As New Random

Dim x As Integer = rndl.Next (10, 99)
dumValues(c) = x
Next

Thxkh ok hhkhhkhhkkhhhhhkhkrkhkhhkhhbhrhrhkhkhkhkhkhhkhkhkkhkhkrhkhkhkxkhx*k

'**% Add results on the listview
Thhkhkhkhkhkhkhhkkhkhhkkhkkhhkhkkhhkhkkhhkhkkhkhkhkkhkkhkhkkhkhhkhkhhkhkhkhkkhkhkkhkhkxkhx

Based on the inserted data in the textbox, the hash values will be added to

the dummy values. The result of adding hash values and dummy values will

be saved into array and then reorder the whole values.

Dim itml As New ListViewItem

Dim numHashedTxt (numHashedTxtl.Length) As String
For b As Integer = 0 To numHashedTxtl.Length - 2
numHashedTxt (b) = dumValues (0).ToString &
numHashedTxtl (b) .ToString & dumValues(l).ToString &

numHashedTxt2 (b) .ToString & numHashedTxt3(b).ToString &
dumValues (2) .ToString

Dim xHashed As String = String.Empty
xHashed = numHashedTxt (b).ToString

58

59

Thxkh ok hhkhhhhkhhhhkhkhkrhkhkdhkhhbhhbhrhkhkhhkhkhrkhkhkhkhkrhkhkhkhkxkhx*k

'** Generation public and private keys
LIRS b b b R S b b b b b b b S b b b S b b b A 2 b b b b b b S 2 b S S b b b S g b b g4

The following code will generate public and private keys for the client.

GetKeys () is a function will call the globalVars.vb which is responsible for

three procedures: generate keys, encryption and decryption.

GetKeys ()

N\

N\

The following code will call encryption function from globalVars.vb class

and this function is called EncryptRSA ().
xHashed = hash values + dummy valus + reorder process

xHashed will be passed to the EncryptRSA () in order to be encrypted and

the result of this process encryption will be saved into cipherX variable.

cipherX = EncryptRSA (xHashed)

Now the client is finished the first stage which included:

¢ (lient interface (textbox, search buttons and searching bar)
¢ Hashing the query

¢ Adding dummy value

e Reorder the query

¢ Encryption the query by using public and private keys.

After finishing these steps, the query is ready to send to the server.

The following code will call many functions from checkEncData.vb class
and this function is called objCheck.checkData (). By calling this function,
decrypt the query, connection the client with server and search for the suery

in the server’s database. After finishing these steps, the function will return

the result in O nd 1 format.

resp = objCheck.checkData (cipherX)

returno = objCheck.getOnes (resp)

Dim splitReturno() As String =
Strings.Split (returno, "[|")

If splitReturno(0) = "1" Then
result = True

Else
result = False

End If

If result = False Then
itml = lstView.Items.Add(arr (b).ToString)
itml.SubItems.Add ("Not Found!")
itml.SubItems (0) .ForeColor = Color.Red
ElseIf result = True Then
itml = lstView.Items.Add(arr (b).ToString)
itml.SubItems.Add ("Found")
' itml.SubItems.Add (splitReturno(l))

itml.SubItems (0) .ForeColor = Color.Green
End If
Next b
End If
stlbl.Text = "Done"
pBar.Value = 100

Else

The following is connected with the first process in the client code, if

the user clicked search without inserting any data in the textbox, the
application will show a message “please insert data”

MsgBox ("Please Insert Data")
End If
End Sub

60

61

n

wf Tl a8 s s -
Yt oL s hsogll fpicl ity Fadii Eshtaiwi
MIDGLE EAST UNIYERSITY FOR GRADUATE STUDIES
Privacy-Enhanced Search Using Bloom Filters
eorch for
sy

| Weedt

Private Sub frmClient_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
Me.Height = 523
lstView.Columns.Add ("Word", 300, HorizontalAlignment.Left)
lstView.Columns.Add ("Status", 100, HorizontalAlignment.Center)
' IstView.Columns.Add ("Table Name", 100,
HorizontalAlignment.Center)
End Sub

End Class

There are many classes built in this project. Each class has many functions and we can call

these functions.

The following code is responsible for the hash processes. Hash function is a built function

in the Microsoft visual basic and it had been used in this project. There are three hash

functions and each one has different equations than the others.
The following equation is for the first hash function:

h = h + Asc(Mid(val, i, 1))

Public Class clsHash

————————————— get hash code 1 ——————-----—~

Public Function Hashl (ByVal val As String) As Int32
Return val.GetHashCode ()

End Function

Public Function Hash2 (ByVal val As String) As Int32
Dim h As Integer

Dim i As Integer

h =20

For 1 = 1 To Len(val)

h =h + Asc(Mid(val, i, 1))

Next i

Return (h + val.GetHashCode())

End Function

Public Function Hash3(ByVal val As String) As Int32

Dim h As Integer
Dim i As Integer

h =20

Dim values As Char() = val.ToCharArray ()

For 1 = 1 To Len(val)

h = h + Asc(values(0)) + Asc(values(values.Length()
Next i

Return (h + val.GetHashCode())

End Function
End Class

1))

62

Designing the server interface required textbox and three buttons:

63

o —— ——

kel GLwhlih gl fpi N Aagly Fadi Eshtaiwi
MIBOLE EAST UNIVERSITY FOR GRABUATE STUSRS

| Privacy-Enhanced Search Using Bloom Filters

Textbox: will let the admin to insert data to the server’s database.

Save button: save the inserted data into the server’s database after hashing process.
Clear data: remove all the data that was inserted from the database.
Close: stop running the application and exit.

Programming the server required to identify many variables.

64

Server Code

Imports System.String

Imports System.Text

Imports Microsoft.VisualBasic
Imports System.IO

Imports System.Data

Imports System.Data.SglClient
Imports System.Security.Cryptography
Imports System.Diagnostics

Imports System.Security

Public Class frmServer
Dim objHash As New clsHash

Private Sub btnEncrypt_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnEncrypt.Click

If txtServer.Text <> "" Then
Dim con As New SglConnection ()
Dim com As New SglCommand ()

———————— Get Random Name from Function Name GetRandomName

Dim TablName As String = "enctbl" 'getRandomName ()
' Dim createTbl As String

To allow the admin to insert the data to the database, it’s needed to establish a

connection between the admin and database.

The following code will establish this connection.

con.ConnectionString = "Data Source =(Local); Initial
Catalog = en_db; Integrated Security = True;"

After the establishment of the connection, this connection has to be open in order to

transmit the data between the admin and the database.

If con.State = Data.ConnectionState.Closed Then
con.Open ()
End If

com.Connection = con

65

Dim line As String = txtServer.Text
Dim arr () As String
arr = Strings.Split(line, " ")

For i = 0 To (CInt(arr.Length - 1))
' Dim hashedTxt As String
Dim numHashedTxtl As Integer
Dim numHashedTxt2 As Integer

There is an array; the inserted data by admin will be set in this array as string. The
array will be the input of the hash procedure. There are three hash functions in
clsHash.vb class. Each word will pass through these hash functions. Each hash

function is various than the other one (each hash hash function has various code).

L

T Get Hashl - —---------——-

numHashedTxtl = objHash.Hashl (arr(i))
numHashedTxt1 CInt (CStr (numHashedTxtl) .Replace("0",

"9"))
If numHashedTxtl < 0 Then
numHashedTxtl = numHashedTxtl * -1
If numHashedTxtl.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl.ToString.Length - 1
numHashedTxtl = CInt (CStr (numHashedTxtl) &
"1")
Next
End If
numHashedTxtl =
Strings.Right (Convert.ToString (numHashedTxtl),
Convert.ToString(numHashedTxtl) .Length -
(Convert.ToString (numHashedTxtl) .Length - 5))
Else
If numHashedTxtl.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl.ToString.Length - 1
numHashedTxtl = CInt (CStr (numHashedTxtl) &
"1")
Next
End If
numHashedTxtl =
Strings.Right (Convert.ToString (numHashedTxtl),
Convert.ToString (numHashedTxtl) .Length -
(Convert.ToString (numHashedTxtl) .Length - 5))

End If

numHashedTxt2 = objHash.Hash2 (arr(i))
numHashedTxt2 CInt (CStr (numHashedTxt?2) .Replace("0",

o))
If numHashedTxt2 < 0 Then
numHashedTxt2 = numHashedTxt2 * -1
If numHashedTxt2.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2.ToString.Length - 1
numHashedTxt2 = CInt (CStr (numHashedTxt2)
"1")
Next
End If
numHashedTxt2 =
Strings.Right (Convert.ToString (numHashedTxt2),
Convert.ToString(numHashedTxt2) .Length -
(Convert.ToString (numHashedTxt2) .Length - 5))
Else
If numHashedTxt2.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2.ToString.Length - 1
numHashedTxt2 = CInt (CStr (numHashedTxt2)
"l")
Next
End If
numHashedTxt2 =
Strings.Right (Convert.ToString (numHashedTxt2),
Convert.ToString(numHashedTxt?2) .Length -
(Convert.ToString (numHashedTxt2) .Length - 5))
End If
e Get Hash3 -~

numHashedTxt3 objHash.Hash3 (arr (i))
numHashedTxt3 = CInt (CStr (numHashedTxt3) .Replace("0",
"9"))
If numHashedTxt3 < 0 Then
numHashedTxt3 = numHashedTxt3 * -1
If numHashedTxt3.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3.ToString.Length - 1
numHashedTxt3 = CInt (CStr (numHashedTxt3)
"l")
Next
End If
numHashedTxt3 =
Strings.Right (Convert.ToString (numHashedTxt3),
Convert.ToString(numHashedTxt3) .Length -
(Convert.ToString (numHashedTxt3) .Length - 5))
Else
If numHashedTxt3.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3.ToString.Length - 1
numHashedTxt3 = CInt (CStr (numHashedTxt3)
"l")
Next

&

&

&

&

66

67

End If
numHashedTIxt3 =
Strings.Right (Convert.ToString (numHashedTxt3),

Convert.ToString (numHashedTxt3) .Length -
(Convert.ToString (numHashedTxt3) .Length - 5))

End If
Dim numHashedTxt As String

numHashedTxt = numHashedTxtl.ToString &
numHashedTxt2.ToString & numHashedTxt3.ToString

After hashing the inserted data by the admin, the first hash value will be inserted

into the database. This procedure will be implanted three times.

Dim rd As SglDataReader
Dim isExist As Boolean

com.CommandType = CommandType.Text
com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &
numHashedTxtl.ToString & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close ()

The program will check the hash value before inserting it because if this hash value

exists in the database, it will not save because it already exists.

If Not isExist Then

com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName & " (enc_id, enc_num) VALUES
('"" & numHashedTxtl.ToString & "', '1'")"

com.ExecuteNonQuery ()

End If

com.CommandType = CommandType.Text

68

com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &
numHashedTxt2.ToString & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close()

If Not isExist Then
com.CommandType = Data.CommandType.Text
com.CommandText = "INSERT INTO " & TablName & " (enc_id, enc_num) VALUES
('"" & numHashedTxt2.ToString & "', '1'")"
com.ExecuteNonQuery ()
End If

e Insert Hash3 -———--------—---—-

com.CommandType = CommandTIype.Text

com.CommandText = "SELECT * FROM " & TablName & " WHERE enc_id ='" &
numHashedTxt3.ToString & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close ()

If Not isExist Then
com.CommandType Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName & " (enc_id, enc_num) VALUES
('"" & numHashedTxt3.ToString & "', '1'")"
com.ExecuteNonQuery ()
End If
Next i

After the admin finishing of inserting the data, the connection will be

closed. The following code will close the connection between the admin

and database.

If con.State = Data.ConnectionState.Open Then
con.Close()
End If
Else
MsgBox ("Please Insert Data")

End If

txtServer.Text = ""

69

End Sub

If the admin clicked the close button, the following code will be executed

and the result of this event is topping the process and closes the application.

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

'Dim frm As New frmMain

'frm.Show ()

Me.Close()

If the admin clicked the Clear database button, the program will show the
admin message box (Yes /No) in order to inform his request because all the

data will be deleted. The following code will be executed and the result of

this event is “Empty Database”.

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Dim con As New SglConnection()
Dim com As New SglCommand ()

If MsgBox("Are you sure you want to clear the database?",

MsgBoxStyle.YesNo, "Clear Database") = MsgBoxResult.No Then
Exit Sub
End If
con.ConnectionString = "Data Source =(Local); Initial Catalog = en_db;
Integrated Security = True;"

If con.State = Data.ConnectionState.Closed Then
con.Open()

End If
com.Connection = con
com.CommandText = "DELETE FROM enctbl"

com.ExecuteNonQuery ()

con.Close()

70

End Sub
End Class

checkEncData.vb is a class which has many functions. Each function will

execute a specific process.
Functions include:

e Decryption the encrypted data by calling functions from globalVars.vb class.

e Search for the hash values in the database.

e Return the result (0 or 1).

checkEncData.vb

Imports Microsoft.VisualBasic
Imports System.Data.SglClient

Public Class checkEncData
Private deCipherX As String = String.Empty

Public Function checkData(ByVal ciphered As String) As String

DecryptRSA() will get the encrypted data from the client’s query and then decrypt it and

return the plain text and put it in the variable (deCipherX).

deCipherX = DecryptRSA()

Dim tempnewDeCipherXl As String
Dim tempnewDeCipherX2 As String

String.Empty
String.Empty

71

Dim FoundHashes (2) As String

ThkhkhkhrdhkhkhhhhkhhhAhhbkhkrkhkhhhhkhrhkhhkhkrhkhkkhhkhkhhkkhrkhhkrxx

'** Dividing hash to three sets of five numbers
LI S i b S b b b b I 2 SR b b S b S b b b Sh S b b b Sh Sh S b 2 Sh Ih b b b 2 dh b b o 4

Dim divDeCipher (2) As String
Dim adds As Integer

For z As Integer = 0 To 2

adds = z * 5

divDeCipher (z) = Strings.Mid(newDeCipherX, adds + 1, 5)
Next

Dim con As New SglConnection

Dim com As New SglCommand

Dim rd As SglDataReader

Dim xx As String = String.Empty

Dim dataTable() As String

Dim isExist As Boolean

After decryption the query, the program will open the connection and search for the

hash values.

con.ConnectionString = "Data Source =(Local); Initial Catalog = en_db;
Integrated Security = True;"

If con.State = Data.ConnectionState.Closed Then
con.Open()

End If
com.Connection = con
com.CommandText = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE = 'BASE TABLE' ORDER BY TABLE_NAME"

rd = com.ExecuteReader

Try

While rd.Read

XX = xxX & rd.GetString(0) & "|"
End While

rd.Close()
con.Close()
dataTable = Strings.Split(xx, "|")

Thhkhkhkhhkhhkkhhhhhkkhkrkhkhhkhrhrhkrhkhkrhkhkhhkhkhhkhrkhhkhxkhx

'** Searching Results
Thxhhhkhhkkhkhkhhrhkkhkhhhkkhhkrhkhkhkhrhbhkhkhkrhkkhkhhkhhhkhhkhkkhhxkx

The following code will search the hash values. If the hash values exist,

the program will return 1. Otherwise, the program will return 0.

If con.State = Data.ConnectionState.Closed Then
con.Open()
End If

com.Connection = con

For j As Integer = 0 To dataTable.Length - 1
If dataTable(j) = String.Empty Then Exit For
For s As Integer = 0 To 2

com.CommandType = CommandType.Text

com.CommandText = "SELECT * FROM " & dataTable(j).ToString & "
& dataTable(j).ToString & ".enc_id = '" & divDeCipher(s) & "'"
rd = com.ExecuteReader ()
isExist = Convert.ToBoolean (rd.Read)
rd.Close ()

If isExist Then

FoundHashes(s) = "1"
Else

FoundHashes(s) = "0O"
End If

Next

Dim myFoundHashes As String = String.Empty

For u As Integer = 0 To FoundHashes.Length - 1
myFoundHashes = myFoundHashes & FoundHashes (u) .ToString
Next

Return myFoundHashes

Next

Catch ex As Exception
Throw ex

End Try

con.Close()

End Function

Public Function getOnes(ByVal foundHash As String) As String
Dim splitResult () As String = Strings.Split (foundHash, "[|")

If InStr(splitResult(0), "O0", CompareMethod.Text) Then

WHERE

72

73

Return "O"

Else

Return "1" '"|" & splitResult(l).ToString
End If

End Function

End Class

globalVars.vb

Imports System.IO
Imports System.Text
Imports Microsoft.VisualBasic

Public Module Globals
Public text_to_encrypt As String
Public pubKey, priKey As String
Dim TDES As TripleDES

The following code will give value for both public and private keys to be used in the

encryption process. These values are set by TripleDES.vb class based on specific

equations.

Public Sub GetKeys()

Try
pubKey = String.Empty
priKey = String.Empty
TDES = New TripleDES
TDES.GetKeysForRSA (pubKey, priKey)

Catch ex As Exception
Throw ex

End Try

End Sub

After getting the public and private keys from TripleDES.vb class, the

program will use these keys in the encryption.

Public Function EncryptRSA(ByVal text As String) As String
Dim txtEnc As Byte()

frmServer.txtEnc.Text = String.Empty

Try

Dim tData As New StringBuilder

Dim arrlis As ArrayList

TDES = New TripleDES

text_to_encrypt = text
arrlis = TDES.EncryptRSA (text, pubKey)

74

For j As Integer = 0 To arrlis.Count - 1
txtEnc = CType(arrlis(j), Byte())

For i As Integer = 0 To txtEnc.Length - 1
frmServer.txtEnc.AppendText ((Chr (txtEnc(i))))
Next i

Next j

Dim innerString As String = frmServer.txtEnc.Text
Return innerString

Catch ex As Exception
Throw ex

End Try

End Function

(

The following code will be used in the decryption process of the encrypted

data. This function will get the public and private keys from TripleDES.vb
class. After getting the keys, the encrypted will pass through many
procedures to decrypt the data. The details of RSA algorithm will be

discussed in the TripleDES.vb class.
%

Public Function DecryptRSA() As String
Dim txtEnc As Byte()
frmClient.txtEnc.Text = String.Empty
Try

Dim tData As New StringBuilder

Dim arrlis As ArraylList

TDES = New TripleDES

arrlis = TDES.EncryptRSA(text_to_encrypt, pubKey)

For j As Integer = 0 To arrlis.Count - 1
txtEnc = CType(arrlis(j), Byte())
txtEnc = TDES.DecryptRSA (txtEnc, priKey)

For 1 As Integer = 0 To txtEnc.Length - 1
frmClient.txtEnc.AppendText ((Chr (txtEnc(i))))
Next i

Next j

Dim innerString As String = frmClient.txtEnc.Text
Return innerString
Catch ex As Exception

Throw ex
End Try

75

End Function
End Module

In this class, public and private keys will be generated for both encryption and
decryption processes. GetKeys()will call the GetKeysForRSA function.

The code of GetKeysForRSA function to provide the EncryptRSA function with the
public and private keys.

TripleDES.vb

Imports
Imports
Imports
Imports

System
System
System
System

.IO
.Security.Cryptography
.Text

Public Class TripleDES

Shared publicKey As String
Shared privateKey As String
Shared xmlKeys As String 'A combination of both the public and private

'The public key only

keys

Dim key3DES() As Byte = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 1¢, 17, 18, 19, 20, 21, 22, 23, 24}

Dim key () As Byte = {1, 2, 3, 4, 5, 6, 7, 8}

Dim iv() As Byte = {65, 110, 68, 26, 69, 178, 200, 219}

Public Sub New()
Dim rsa As New RSACryptoServiceProvider

xmlKeys = rsa.ToXmlString(True)
publicKey = rsa.ToXmlString(False)
End Sub

Public Sub New(ByVal encType As String)
Select Case encType

Case "3DES"

Case "RSA"

Case Else

End Select

End Sub

After hashing the data, the result of hash values added to dummy values and

reordering the whole query will be the input of the encryption function. The

following code will do the encryption process. Public also will be encrypted.

Public Function Encrypt (ByVal plainText As String, ByVal encType As

String) As Byte()

Dim utf8encoder As UTF8Encoding = New UTF8Encoding

Dim inputInBytes () As Byte = utf8encoder.GetBytes(plainText)
Dim tdesProvider As Object

Dim cryptoTransform As Object

Select Case encType

Case "DES"

tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateEncryptor (Me.key, Me.iv)
Case "3DES"

tdesProvider = New TripleDESCryptoServiceProvider
cryptoTransform = tdesProvider.CreateEncryptor (Me.key3DES, Me.iv)
End Select

Dim encryptedStream As MemoryStream = New MemoryStream
Dim cryptStream As CryptoStream = New CryptoStream(encryptedStream,
cryptoTransform, CryptoStreamMode.Write)

cryptStream.Write (inputInBytes, 0, inputInBytes.Length)
cryptStream.FlushFinalBlock ()
encryptedStream.Position = 0

Dim result (encryptedStream.Length - 1) As Byte
encryptedStream.Read (result, 0, encryptedStream.Length)
cryptStream.Close ()

Return result

End Function

The encrypted data will be encrypted and extract the public and private keys

in the server and client. The decryption process in this project is involved in

many places. The client will call this function two times and the server once.

Public Function Decrypt (ByVal inputInBytes() As Byte, ByVal decType As

String) As String
Dim utf8encoder As UTF8Encoding = New UTF8Encoding

Dim tdesProvider As Object

Dim cryptoTransform As Object

Select Case decType

Case "DES"

tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateDecryptor (Me.key, Me.iv)

Collision Rate calculation code

DimmAs String= (arr.Length - 1)
Dim aaAs String= (1 - (1 - (1 / m)) ~ 6) ~ 3

76

77

Chapter 6

Conclusions

Bloom filters (server’s database in this project) can be built by using hashing
function which provides the hash values to the server’s database and then it will be
secured. The proposed system can solve the third party problem. There are three eight
encryption/decryption processes in this project which mean the security is very high
level. Through this project, the third party has been removed and the client has the ability
to enter the server’s database without knowing what the client is looking for. RSA is used
in this project in order to encrypt the query because it’s a very strong algorithm technique
and no one can crack the query after encrypt it by two different keys. The size of the
document can affect the performance of this project. So if the document size is increased,
the required time to find the query will increase. Using three hash functions will decrease
or prevent the collision rate in this project and the program is not designed to have a word
with the same hash values. “Eshtaiwi” word doesn’t exist in the server’s database, so the
program return is not found. Copy and Paste is not supported in this project because may
be any client can attach a huge number of data and this will occur down in the server.
SQL server 2005 is very good software to build the database and it can be used in many
applications and the server’s database in this project is dynamic and that is a good feature
that can be provided by SQL server 2005. So the administrator can insert data as possible

as (this is determined by SQL server program).

The proposed system will enhance the privacy during the search process in the
bloom filters. Information security and privacy is a very important issue for any
organizations and companies especially when they are sharing the data between them. It
is necessary when there are two or more parties that do not trust each other and they are
share data between them. For example if there are two intelligence agencies that share the
data and they wish to let each party query the other databases without disclosing the
query and know what the other is searching for specific data. (Bellovin and Rescorla ,

2005).

78

Chapter 7

Recommendations

Implement this project in the real world especially in two parties that don’t fully
trust each other.

This project is designed by using VB.net so it’s recommended to use another
software package because VB.net in the server interface doesn’t allow the admin
to perform copy/past feature and the admin must insert the data by typing which
will take long time.

This project uses three hash functions. So, it’s recommended to use two hash
functions rather three. Each word in this project will yield three hash values, so
the number of hash values is huge and requires a huge of database. SQL server
2005 is limited space.

The server’s database in this project is built by typing the text in the specific
textbox. So it’s recommended to change the method of inserting data to the
server’s database by uploading files. This feature will allow the admin to upload
the data as file whereas .txt, .doc and .pdf. This feature wasn’t adopted in this

project in order to prevent attaching huge file which brings the server down.

Appendix
Menu Code

Public Class frmMain

Private Sub Buttonl_Click(ByVal sender As System.Object,
System.EventArgs) Handles Buttonl.Click
Dim frm As New frmClient
frm.Show ()
End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
System.EventArgs) Handles Button2.Click
Dim frm As New frmServer
frm.Show ()
End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
System.EventArgs) Handles Button3.Click
Application.Exit ()
End Sub
End Class

79

ByVal e As

ByVal e As

ByVal e As

80

Client Code

Public Class frmClient
Dim objHash As New clsHash
Dim dumValues(3) As Integer

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
' Dim frm As New frmMain
' frm.Show ()
Me.Close ()
End Sub

Private Sub btnSearch_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnSearch.Click
If txtClient.Text <> "" Then
Dim timee As String = Date.Now
On Error Resume Next
Dim cipherX As String
Dim objCheck As New checkEncData
Dim resp As String
Dim returno As String
Dim result As Boolean

pBar.Value = 0
If txtClient.Text <> String.Empty Then

Dim line As String = txtClient.Text

Dim arr () As String

arr = Split(line, " ")

Dim arrLength As Integer = CInt (arr.Length)
Dim numHashedTxtl (arrLength) As Integer
Dim numHashedTxt2 (arrLength) As Integer
Dim numHashedTxt3 (arrLength) As Integer

stlbl.Visible = True
pBar.Visible = True

stlbl.Text = "Searching..."
pBar.Minimum = 0
pBar.Maximum = 100

For i = 0 To (CInt(arr.Length - 1))

pBar.Value = pBar.Value + 10 * (i + 1)

Thkhhhhhkhhkkhhkhhkhkhhbhhkkhrkhkhhkhrhrhkhkhkhkrhkhkhkhkhkhhkhkrkhhkhx*k

'** Get Hashl
LEE S I e I b I b b b b b I b b b b b I b b I b b I b b I b b b b b b b b b b b b b b
numHashedTxtl (i) = objHash.Hashl (arr(i))
numHashedTxtl (i) =
CInt (CStr (numHashedTxtl (i)) .Replace("0", "9"))
If numHashedTxtl (i) < O Then
numHashedTxtl (i) = numHashedTxtl(i) * -1
If numHashedTxtl (i) .ToString.Length < 5 Then

For y As Integer = 1 To
numHashedTxtl (i) .ToString.Length - 1
numHashedTxtl (i) =
CInt (CStr (numHashedTxtl(i)) & "1")
Next
End If
numHashedTxtl (i) =
Strings.Right (Convert.ToString (numHashedTxt1l(i)),
Convert.ToString (numHashedTxtl (i)) .Length -
(Convert.ToString (numHashedTxtl(i)) .Length - 5))
Else
If numHashedTxtl (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl (i) .ToString.Length - 1
numHashedTxtl (1) =
CInt (CStr (numHashedTxtl(i)) & "1")
Next
End If
numHashedTxtl (i) =
Strings.Right (Convert.ToString (numHashedTxt1l(i)),
Convert.ToString (numHashedTxtl (1)) .Length -
(Convert.ToString (numHashedTxtl(i)) .Length - 5))

End If

Thkhhkhhhkhhkkhhkkhhkhkhhbhhkkhrkhkhhkhrhrhkhkhkhkrhkhkhkhkhkhhkhrkhhkhx*k

'** Get Hash2
Thkkhkkhkhhkhkhhhkhhhkhhkhkhhbhk kbbb kb hkhkhkhkhkhhkhkrkhkkhkhkhkhkkhkhhkxkkx
numHashedTxt2 (i) = objHash.Hash2 (arr(i))
numHashedTxt2 (1) =
CInt (CStr (numHashedTxt2(i)) .Replace("0", "9"))
If numHashedTxt2 (i) < 0 Then
numHashedTxt2 (i) = numHashedTxt2(i) * -1
If numHashedTxt2 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2 (i) .ToString.Length - 1
numHashedTxt2 (i) =
CInt (CStr (numHashedTxt2(i)) & "1")
Next
End If
numHashedTxt2 (1) =
Strings.Right (Convert.ToString (numHashedTxt2(i)),
Convert.ToString (numHashedTxt2 (i)) .Length -
(Convert.ToString (numHashedTxt2 (i)) .Length - 5))
Else
If numHashedTxt2 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2 (i) .ToString.Length - 1
numHashedTxt2 (1) =
CInt (CStr (numHashedTxt2(i)) & "1")
Next
End If
numHashedTxt2 (i) =
Strings.Right (Convert.ToString (numHashedTxt2(1i)),
Convert.ToString (numHashedTxt2 (1)) .Length -
(Convert.ToString (numHashedTxt2 (i)) .Length - 5))

81

End If

ThkhkhkkhrkdhhkhhhhkhhhAhhAkhkrkhhhhrhrhkhhkhkrhkhkhhkhkhhkhrkhhkrxx

'** Get Hash3
Thkkhkkhkhhkhkhhrhkhhhkhbhkhkhhbhkkhkhhhkhkhkrhkhkhkhkhkhhkhkrkhkkhkhkhkhkkhkhhhxkkx
numHashedTxt3 (i) = objHash.Hash3 (arr(i))
numHashedTxt3 (1) =
CInt (CStr (numHashedTxt3(i)) .Replace("0", "9"))
If numHashedTxt3 (i) < 0 Then
numHashedTxt3 (i) = numHashedTxt3 (i) * -1
If numHashedTxt3 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3 (i) .ToString.Length - 1
numHashedTxt3 (i) =
CInt (CStr (numHashedTxt3(i)) & "1")
Next
End If
numHashedTxt3 (i) =
Strings.Right (Convert.ToString (numHashedTxt3(1i)),
Convert.ToString (numHashedTxt3(i)) .Length -
(Convert.ToString (numHashedTxt3(1i)).Length - 5))
Else
If numHashedTxt3 (i) .ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt3 (i) .ToString.Length - 1
numHashedTxt3 (1) =
CInt (CStr (numHashedTxt3(i)) & "1")
Next
End If
numHashedTxt3 (i) =
Strings.Right (Convert.ToString (numHashedTxt3(1i)),
Convert.ToString (numHashedTxt3 (1)) .Length -
(Convert.ToString (numHashedTxt3(i)) .Length - 5))
End If

Next i
MsgBox (timee)

Thxkhrkhkhhkhhhhkhhhhhkhkrkhkhhkhhbhhbhkrhkhkhrhkhkhhkhkhkkhkhkrhkhkhkhkxkhx*k

'** Randomize dummy values
LI e I I e I I b I b b I b b b b b b b b I b b b b b b 2 b b b b I b b b b b b b g
For ¢ = 0 To 2
Dim rndl As New Random
Dim x As Integer = rndl.Next (10, 99)
dumValues(c) = x
Next

Thxkhhokhkhkhhhhhkkhhhhhkhkrkhhhkhhrhhbhkrhkhkhhkhkhhkhkhkkhkhkrhkhkhkhkxkhx*k

'** Add results on the listview

LI SR b b S SR Sh b b i 2 S b b S S SR S b I S 2 dh b b i dh b b b S S SR b b i S S I S S g4
Dim itml As New ListViewItem

Dim numHashedTxt (numHashedTxtl.Length) As String

For b As Integer = 0 To numHashedTxtl.Length - 2
numHashedTxt (b) = dumValues(0).ToString &
numHashedTxtl (b) .ToString & dumValues(l).ToString &

numHashedTxt2 (b) .ToString & numHashedTxt3(b).ToString &

dumValues (2) .ToString

Dim xHashed As String = String.Empty
xHashed = numHashedTxt (b) .ToString

GetKeys ()
cipherX = EncryptRSA (xHashed)
MsgBox (cipherX)

resp = objCheck.checkData (cipherX)

text_to_encrypt = objCheck.checkData (cipherX)
'DecryptRSA ()

returno = objCheck.getOnes (resp)

Dim splitReturno() As String =

Strings.Split (returno, "[|")

If splitReturno(0) = "1" Then
result = True

Else
result = False

End If

If result = False Then

itml = 1lstView.Items.Add(arr (b).ToString)
itml.SubItems.Add ("Not Found!")

itml.SubItems (0) .ForeColor
ElseIf result = True Then

= Color.Red

itml = lstView.Items.Add(arr (b).ToString)

itml.SubItems.Add ("Found")

' itml.SubItems.Add(splitReturno(1l))

itml.SubItems (0) .ForeColor
End If
Next b

End If

stlbl.Text = "Done"
pBar.Value 100

Else
MsgBox ("Please Insert Data")
End If
End Sub

Private Sub frmClient_Load(ByVal sender As System.Object,

As System.EventArgs) Handles MyBase.Load
Me.Height = 523

= Color.Green

lstView.Columns.Add ("Word", 300, HorizontalAlignment.Left)

lstView.Columns.Add("Status", 100, HorizontalAlignment.Center)

' IstView.Columns.Add("Table Name", 100,
HorizontalAlignment.Center)
End Sub

End Class

ByVal e

Hash Code

Imports Microsoft.VisualBasic
Imports System.IO

Public Class clsHash

e get hash code 1 —————---—--———
Public Function Hashl (ByVal val As String) A
Return val.GetHashCode ()

End Function

Public Function Hash?2 (ByVal val As String)
Dim h As Integer

Dim i As Integer

h =20

For 1 = 1 To Len(val)

h =h + Asc(Mid(val, i, 1))

Next i

Return (h + val.GetHashCode())

End Function

Public Function Hash3 (ByVal val As String)

Dim h As Integer
Dim i As Integer

h =20

Dim values As Char() = val.ToCharArray ()
For 1 = 1 To Len(val)

h = h + Asc(values(0)) + Asc(values(values.
Next i

Return (h + val.GetHashCode())

End Function
End Class

s Int32

As Int32

As Int32

Length ()

1))

84

85

Server Code

Imports System.String

Imports System.Text

Imports Microsoft.VisualBasic
Imports System.IO

Imports System.Data

Imports System.Data.SglClient
Imports System.Security.Cryptography
Imports System.Diagnostics

Imports System.Security

Public Class frmServer
Dim objHash As New clsHash

Private Sub btnEncrypt_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnEncrypt.Click

If txtServer.Text <> "" Then
Dim con As New SglConnection()
Dim com As New SglCommand ()

b Get Random Name from Function Name GetRandomName
Dim TablName As String = "enctbl" 'getRandomName ()
' Dim createTbl As String

con.ConnectionString = "Data Source =(Local); Initial
Catalog = en_db; Integrated Security = True;"
If con.State = Data.ConnectionState.Closed Then
con.Open ()
End If

com.Connection = con

Dim line As String = txtServer.Text
Dim arr () As String
arr = Strings.Split(line, " ")

For i = 0 To (CInt(arr.Length - 1))
' Dim hashedTxt As String
Dim numHashedTxtl As Integer
Dim numHashedTxt2 As Integer
Dim numHashedTxt3 As Integer

e Get Hashl - ———————————-———-
numHashedTxtl = objHash.Hashl (arr(i))
numHashedTxtl = CInt (CStr (numHashedTxtl) .Replace("0",

"9"))
If numHashedTxtl < 0 Then
numHashedTxtl = numHashedTxtl * -1

If numHashedTxtl.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl.ToString.Length - 1
numHashedTxtl = CInt (CStr (numHashedTxtl)
"l")
Next
End If
numHashedTxtl =
Strings.Right (Convert.ToString (numHashedTxtl),
Convert.ToString (numHashedTxtl) .Length -
(Convert.ToString (numHashedTxtl) .Length - 5))
Else
If numHashedTxtl.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxtl.ToString.Length - 1
numHashedTxtl = CInt (CStr (numHashedTxtl)
"l")
Next
End If
numHashedTxtl =
Strings.Right (Convert.ToString (numHashedTxtl),
Convert.ToString (numHashedTxtl) .Length -
(Convert.ToString (numHashedTxtl) .Length - 5))

End If
T Get Hash2 - ——------————~

numHashedTxt2 = objHash.Hash2 (arr(i))
numHashedTxt2 = CInt (CStr (numHashedTxt2) .Replace("0",
"9"))
If numHashedTxt2 < 0 Then
numHashedTxt2 = numHashedTxt2 * -1
If numHashedTxt2.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2.ToString.Length - 1
numHashedTxt2 = CInt (CStr (numHashedTxt2)
"l")
Next
End If
numHashedTxt2 =
Strings.Right (Convert.ToString (numHashedTxt2),
Convert.ToString (numHashedTxt?2) .Length -
(Convert.ToString (numHashedTxt2) .Length - 5))
Else
If numHashedTxt2.ToString.Length < 5 Then
For y As Integer = 1 To
numHashedTxt2.ToString.Length - 1
numHashedTxt2 = CInt (CStr (numHashedTxt2)
"1")
Next
End If
numHashedTxt2 =
Strings.Right (Convert.ToString (numHashedTxt2),
Convert.ToString(numHashedTxt2) .Length -
(Convert.ToString (numHashedTxt2) .Length - 5))
End If

&

&

&

&

86

H9"))

87

e Get Hash3 - ——
numHashedTxt3 = objHash.Hash3 (arr(i))
numHashedTxt3 = CInt (CStr (numHashedTxt3) .Replace("0",

If numHashedTxt3 < 0 Then

numHashedTxt3 = numHashedTxt3 * -1
If numHashedTxt3.ToString.Length < 5 Then
For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1
numHashedTxt3 = CInt (CStr (numHashedTxt3) &

"l")

Next
End If
numHashedTxt3 =

Strings.Right (Convert.ToString (numHashedTxt3),
Convert.ToString(numHashedTxt3) .Length -
(Convert.ToString (numHashedTxt3) .Length - 5))
Else

If numHashedTxt3.ToString.Length < 5 Then
For y As Integer = 1 To

numHashedTxt3.ToString.Length - 1
numHashedTxt3 = CInt (CStr (numHashedTxt3) &

"l")

Next
End If
numHashedTxt3 =

Strings.Right (Convert.ToString (numHashedTxt3),
Convert.ToString (numHashedTxt3) .Length -
(Convert.ToString (numHashedTxt3) .Length - 5))

End

Dim
num

If

numHashedTxt As String
HashedTxt = numHashedTxtl.ToString &

numHashedTxt2.ToString & numHashedTIxt3.ToString

enc_id =""

"(enc_id,

Dim
Dim

com.

com
& numHas
rd
isE
rd.

If

enc_num)

End

rd As SglDataReader

isExist As Boolean

CommandType = CommandType.Text

.CommandText = "SELECT * FROM " & TablName & "
hedTxtl.ToString & "'"
= com.ExecuteReader ()
xist = Convert.ToBoolean (rd.Read)
Close ()
Not isExist Then

com.CommandType = Data.CommandType.Text
com.CommandText = "INSERT INTO " & TablName &
VALUES ('" & numHashedTxtl.ToString & "', '1")"
com.ExecuteNonQuery ()

If

WHERE

88

com.CommandType CommandType.Text

com.CommandText = "SELECT * FROM " & TablName & " WHERE
enc_id ="'" & numHashedTxt2.ToString & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close ()

If Not isExist Then
com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName &
"(enc_id, enc_num) VALUES ('" & numHashedTxt2.ToString & "', '1")"
com.ExecuteNonQuery ()
End If

com.CommandType CommandType.Text

com.CommandText = "SELECT * FROM " & TablName & " WHERE
enc_id ='" & numHashedTxt3.ToString & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close ()

If Not isExist Then
com.CommandType = Data.CommandType.Text

com.CommandText = "INSERT INTO " & TablName &
"(enc_id, enc_num) VALUES ('" & numHashedTxt3.ToString & "', '1")"
com.ExecuteNonQuery ()
End If

If con.State = Data.ConnectionState.Open Then
con.Close()
End If
Else
MsgBox ("Please Insert Data")

End If

txtServer.Text = ""
End Sub

Function getRandomName () As String
Dim ref As String
Dim randoml As New Random
Dim dt As DateTime = DateTime.Now

If dt.Millisecond.ToString.Length = 1 Then
ref = ref + "00" + dt.Millisecond.ToString

ElseIf dt.Millisecond.ToString.Length = 2 Then

89

ref = ref + "O0" + dt.Millisecond.ToString
Else

ref = ref + dt.Millisecond.ToString
End If

ref = ref + randoml.Next (10000, 99999) .ToString

Return ref
End Function

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
'Dim frm As New frmMain
'frm.Show ()
Me.Close()
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Dim con As New SglConnection ()
Dim com As New SglCommand ()

If MsgBox("Are you sure you want to clear the database?",

MsgBoxStyle.YesNo, "Clear Database") = MsgBoxResult.No Then
Exit Sub
End If
con.ConnectionString = "Data Source =(Local); Initial Catalog =
en_db; Integrated Security = True;"

If con.State = Data.ConnectionState.Closed Then
con.Open()

End If
com.Connection = con
com.CommandText = "DELETE FROM enctbl"

com.ExecuteNonQuery ()

con.Close()
End Sub
End Class

90

checkEncData.vb

Imports Microsoft.VisualBasic
Imports System.Data.SglClient

Public Class checkEncData
Private deCipherX As String = String.Empty

Public Function checkData(ByVal ciphered As String) As String

deCipherX = DecryptRSA()

Dim newDeCipherX As String = String.Empty

Dim tempnewDeCipherXl As String = String.Empty
Dim tempnewDeCipherX2 As String = String.Empty
Dim FoundHashes (2) As String

newDeCipherX = Strings.Right (deCipherX, deCipherX.Length - 2)
'**Cut front dummy

newDeCipherX = Strings.Left (newDeCipherX, newDeCipherX.Length -
2) '"**Cut rare dummy

tempnewDeCipherXl = Strings.Left (newDeCipherX,
newDeCipherX.Length - 12) '**Front

tempnewDeCipherX2 = Strings.Right (newDeCipherX,
newDeCipherX.Length - 7) '"**End

newDeCipherX = tempnewDeCipherXl & tempnewDeCipherX2 '** Pure
Hash

ThhkhkhrdhhkhhhhkhkhhAhhAkhrkhhhhhkhrhkhhkhkrhkhkhhkhkhhkhrkhhkrxx

'** Dividing hash to three sets of five numbers
LIS 2 b R I 2 S b b b I S S SR b i S g S b b S Sh b b i b S b b S S SR b b i S A b b o 4
Dim divDeCipher (2) As String

Dim adds As Integer

For z As Integer = 0 To 2

adds = z * 5

divDeCipher (z) = Strings.Mid(newDeCipherX, adds + 1, 5)
Next

Dim con As New SglConnection
Dim com As New SglCommand

Dim rd As SglDataReader

Dim xx As String = String.Empty
Dim dataTable() As String

Dim isExist As Boolean

con.ConnectionString = "Data Source =(Local); Initial Catalog =
en_db; Integrated Security = True;"
If con.State = Data.ConnectionState.Closed Then
con.Open()
End If

com.Connection = con

91

com.CommandText = "SELECT TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES WHERE TABLE_TYPE = 'BASE TABLE' ORDER BY
TABLE_NAME"

rd = com.ExecuteReader

Try
While rd.Read
XX = xx & rd.GetString(0) & "|"
End While

rd.Close()
con.Close()

dataTable = Strings.Split(xx, "|")

Thdkhkhkhhkhhkkhhhhhkhkrkhkhdhkhrhrhkrkhkhkrhkhkhhkhkhhkhrkhhkhxkhx

'** Searching Results
LR b b b b S 2 b b b S b b b S 2 b b S A b b b A 2 b b S b b b S b b b b S b b b a3

If con.State = Data.ConnectionState.Closed Then
con.Open ()
End If

com.Connection = con

For j As Integer = 0 To dataTable.Length - 1

If dataTable(j) = String.Empty Then Exit For
For s As Integer = 0 To 2
com.CommandType = CommandType.Text
com.CommandText = "SELECT * FROM " &

dataTable(j) .ToString & " WHERE " & dataTable(j).ToString & ".enc_id =
'" & divDeCipher(s) & "'"

rd = com.ExecuteReader ()

isExist = Convert.ToBoolean (rd.Read)

rd.Close ()

If isExist Then

FoundHashes(s) = "1"
Else

FoundHashes(s) = "0O"
End If

Next

Dim myFoundHashes As String = String.Empty
For u As Integer = 0 To FoundHashes.Length - 1
myFoundHashes = myFoundHashes &
FoundHashes (u) .ToString
Next

'**% Returning hash search result for this word with the
table name before

Return myFoundHashes '& "|" & dataTable(j).ToString
'"EncryptRSA (myFoundHashes & "|" & dataTable(j).ToString)

Next

Catch ex As Exception
Throw ex

End Try
con.Close()
End Function

Public Function getOnes (ByVal foundHash As String)

As String

Dim splitResult() As String = Strings.Split (foundHash, "|")

If InStr(splitResult(0), "0", CompareMethod.Text) Then

Return "O"
Else
Return "1" "|" & splitResult(l).ToString
End If
End Function
End Class

92

globalVars.vb

Imports System.IO
Imports System.Text
Imports Microsoft.VisualBasic

Public Module Globals
Public text_to_encrypt As String
Public pubKey, priKey As String
Dim TDES As TripleDES

Public Sub GetKeys ()
Try
pubKey = String.Empty
priKey = String.Empty
TDES = New TripleDES
TDES.GetKeysForRSA (pubKey, priKey)
Catch ex As Exception
Throw ex
End Try
End Sub

Public Function EncryptRSA(ByVal text As String) As String
Dim txtEnc As Byte()
frmServer.txtEnc.Text = String.Empty
Try
Dim tData As New StringBuilder
Dim arrlis As ArraylList
TDES = New TripleDES

text_to_encrypt = text
arrlis = TDES.EncryptRSA(text, pubKey)

For j As Integer = 0 To arrlis.Count - 1
txtEnc = CType(arrlis(j), Byte())

For 1 As Integer = 0 To txtEnc.Length - 1
frmServer.txtEnc.AppendText ((Chr (txtEnc(i))))
Next i
Next j

Dim innerString As String = frmServer.txtEnc.Text
Return innerString

Catch ex As Exception
Throw ex
End Try
End Function

Public Function DecryptRSA() As String
Dim txtEnc As Byte()
frmClient.txtEnc.Text = String.Empty
Try

Dim tData As New StringBuilder
Dim arrlis As ArraylList

94

TDES = New TripleDES
arrlis = TDES.EncryptRSA(text_to_encrypt, pubKey)
For j As Integer = 0 To arrlis.Count - 1

txtEnc CType (arrlis(j), Byte())
txtEnc = TDES.DecryptRSA(txtEnc, priKey)

For 1 As Integer = 0 To txtEnc.Length - 1
frmClient.txtEnc.AppendText ((Chr (txtEnc(i))))
Next i
Next j

Dim innerString As String = frmClient.txtEnc.Text

Return innerString

Catch ex As Exception

Throw ex

End Try
End Function

End Module

95

TripleDES.vb

Imports System

Imports System.IO

Imports System.Security.Cryptography
Imports System.Text

Public Class TripleDES

Shared publicKey As String 'The public key only

Shared privateKey As String

Shared xmlKeys As String 'A combination of both the public and
private keys

Dim key3DES() As Byte = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Dim key() As Byte = {1, 2, 3, 4, 5, 6, 7, 8}

Dim iv () As Byte = {65, 110, 68, 26, 69, 178, 200, 219}

Public Sub New ()
Dim rsa As New RSACryptoServiceProvider

xmlKeys = rsa.ToXmlString(True)
publicKey = rsa.ToXmlString(False)
End Sub

Public Sub New(ByVal encType As String)
Select Case encType
Case "3DES"
Case "RSA"
Case Else
End Select
End Sub

Public Function Encrypt (ByVal plainText As String, ByVal encType As
String) As Byte()
Dim utf8encoder As UTF8Encoding = New UTF8Encoding
Dim inputInBytes() As Byte = utf8encoder.GetBytes(plainText)
Dim tdesProvider As Object
Dim cryptoTransform As Object
Select Case encType
Case "DES"
tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateEncryptor (Me.key,

Me.iv)
Case "3DES"
tdesProvider = New TripleDESCryptoServiceProvider
cryptoTransform =
tdesProvider.CreateEncryptor (Me.key3DES, Me.iv)
End Select

Dim encryptedStream As MemoryStream = New MemoryStream
Dim cryptStream As CryptoStream = New
CryptoStream(encryptedStream, cryptoTransform, CryptoStreamMode.Write)

96

cryptStream.Write (inputInBytes, 0, inputInBytes.Length)

cryptStream.FlushFinalBlock ()
encryptedStream.Position = 0

Dim result (encryptedStream.Length - 1) As Byte

encryptedStream.Read (result, 0, encryptedStream.Length)

cryptStream.Close ()
MsgBox (result)
Return result

End Function

Public Function Decrypt (ByVal inputInBytes() As Byte,
As String) As String

ByVal decType

Dim utf8encoder As UTF8Encoding = New UTF8Encoding

Dim tdesProvider As Object
Dim cryptoTransform As Object
Select Case decType

Case "DES"

tdesProvider = New DESCryptoServiceProvider

cryptoTransform = tdesProvider.CreateDecryptor (Me.key,

Me.iv)
Case "3DES"
tdesProvider = New TripleDESCryptoServiceProvider
cryptoTransform =
tdesProvider.CreateDecryptor (Me.key3DES, Me.iv)
End Select

Dim decryptedStream As MemoryStream = New MemoryStream

Dim cryptStream As CryptoStream = New

CryptoStream(decryptedStream, cryptoTransform, CryptoStreamMode.Write)
cryptStream.Write (inputInBytes, 0, inputInBytes.Length)

'cryptStream.Flush ()
cryptStream.FlushFinalBlock ()
decryptedStream.Position = 0

Dim result (decryptedStream.Length - 1) As Byte

decryptedStream.Read (result, 0, decryptedStream.Length)

cryptStream.Close ()
Dim myutf As UTF8Encoding = New UTF8Encoding
Return myutf.GetString(result)

End Function

Public Function EncryptRSA (ByVal plainText As String,
String) As Arraylist
Dim rsa As New RSACryptoServiceProvider
rsa.UseMachineKeyStore = True
Dim EncryptedStrAsByt () As Byte
Dim encrAl As New ArrayList
Dim maxLimit As Integer = 58
rsa.FromXmlString(key)
Dim strs() As String
If (plainText.Length > maxLimit) Then

Dim splitText As String

ByVal key As

97

For counter As Integer = 0 To plainText.Length

If (plainText.Length - counter < maxLimit) Then
splitText = plainText.Substring(counter,
plainText.Length - counter)
Else
splitText = plainText.Substring(counter, maxLimit)
End If
EncryptedStrAsByt =

rsa.Encrypt (System.Text.Encoding.Unicode.GetBytes (splitText), False)
encrAl.Add (EncryptedStrAsByt)
counter = counter + (maxLimit - 1)
Next

Else
EncryptedStrAsByt =
rsa.Encrypt (System.Text.Encoding.Unicode.GetBytes (plainText), False)
encrAl.Add (EncryptedStrAsByt)
End If

Return encrAl
End Function

Public Function DecryptRSA(ByVal inputBytes() As Byte, ByVal key As
String) As Byte()
Dim rsa As New RSACryptoServiceProvider
rsa.UseMachineKeyStore = True
rsa.FromXmlString (key)

Dim DecryptedStrAsByte () As Byte = rsa.Decrypt (inputBytes,
False)

publicKey = String.Empty

privateKey = String.Empty

Return DecryptedStrAsByte

End Function

Public Shared Function Encrypt (ByVal plainText As String,
ByVal passPhrase As String,
ByVal saltValue As String,
ByVal hashAlgorithm As String,
ByVal passwordIterations As Integer,

ByVal initVector As String,
ByVal keySize As Integer)
As String
Dim initVectorBytes As Byte() =
Encoding.ASCII.GetBytes(initVector)

Dim saltValueBytes As Byte() =
Encoding.ASCII.GetBytes(saltValue)

Dim plainTextBytes As Byte()
Encoding.UTF8.GetBytes (plainText)

Dim password As PasswordDeriveBytes = New
PasswordDeriveBytes (passPhrase,
saltValueBytes,
hashAlgorithm,

98

passwordIterations)
Dim keyBytes As Byte() = password.GetBytes(keySize / 8)
Dim symmetricKey As RijndaelManaged = New RijndaelManaged

symmetricKey.Mode = CipherMode.CBC
symmetricKey.Padding = PaddingMode.PKCS7

Dim encryptor As ICryptoTransform =
symmetricKey.CreateEncryptor (keyBytes, initVectorBytes)
Dim memoryStream As MemoryStream = New MemoryStream

Dim cryptoStream As CryptoStream = New
CryptoStream(memoryStream,
encryptor, _
CryptoStreamMode.Write)

cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length)
cryptoStream.FlushFinalBlock ()

Dim cipherTextBytes As Byte() = memoryStream.ToArray ()
memoryStream.Close ()
cryptoStream.Close()

Dim cipherText As String =
Convert.ToBase64String (cipherTextBytes)
Encrypt = cipherText
End Function

Public Shared Function Decrypt (ByVal cipherText As String,
ByVal passPhrase As String,
ByVal saltValue As String,
ByVal hashAlgorithm As String,
ByVal passwordIterations As Integer,

ByVal initVector As String,
ByVal keySize As Integer)

As String

Dim initVectorBytes As Byte()
Encoding.ASCII.GetBytes(initVector)

Dim saltValueBytes As Byte() =
Encoding.ASCII.GetBytes(saltValue)

Dim cipherTextBytes As Byte()
Convert.FromBase64String (cipherText)

Dim password As PasswordDeriveBytes = New
PasswordDeriveBytes (passPhrase,

saltValueBytes,

hashAlgorithm,

passwordIterations)
Dim keyBytes As Byte() = password.GetBytes(keySize / 8)

Dim symmetricKey As RijndaelManaged = New RijndaelManaged

symmetricKey.Mode = CipherMode.CBC
symmetricKey.Padding = PaddingMode.PKCS7

Dim decryptor As ICryptoTransform =
symmetricKey.CreateDecryptor (keyBytes, initVectorBytes)

Dim memoryStream As MemoryStream = New
MemoryStream (cipherTextBytes)

Dim cryptoStream As CryptoStream = New
CryptoStream(memoryStream,
decryptor,
CryptoStreamMode.Read)
Dim plainTextBytes As Byte()
ReDim plainTextBytes (cipherTextBytes.Length)

Dim decryptedByteCount As Integer =
cryptoStream.Read(plainTextBytes,
0, _
plainTextBytes.Length)

memoryStream.Close ()
cryptoStream.Close()

Dim plainText As String =
Encoding.UTF8.GetString(plainTextBytes,
Or_
decryptedByteCount)
Decrypt = plainText
End Function

Public Sub GetKeysForRSA (ByRef pubKey As String, ByRef priKey As
String)
Try
Dim rsa As New RSACryptoServiceProvider
rsa.UseMachineKeyStore = True
pubKey = rsa.ToXmlString(False)
priKey = rsa.ToXmlString(True)
rsa = Nothing
Catch ex As Exception
Throw ex
End Try
End Sub

End Class

99

100

References

- Aimeur, E., Gambs, S., and Ho, A. (2010). Towards a privacy-enhanced social
networking site. Proceedings of ARES, 172-179.

- Bellare, M., Boldyreva, A. and Adam O’Neill, A., (2007). Deterministic and
efficiently searchable encryption, CRYPTO 07 Proceedings. Lecture Notes in
Computer Science, 4622, 535-552.

- Bellovin, M. and Rescorla, K. (2005). Deploying. Deploying a new hash
algorithm. Technical Report CUCS-036-05, Dept. of Computer Science,

Columbia University.

- Bellovin, M. and Cheswick, W. (2004). Privacy-enhanced searches using
encrypted bloom filters. Columbia University, 1-16, Technical Report CUCS-034-
07.

- Bellovin, M. and Rescorla, K. (2007). Privacy-enhanced searches using

encrypted bloom filters, Technical Report CUCS-034-07.

- Bonch, D. Dicrescenzo, G. (2004). Public key encryption with keyword search,
Published by Stanford University, Stanford, USA.

- Curtmola, R., Garay, J., Kamara, S. and Ostrovsky, R. (2005). Searchable
symmetric encryption: improved definitions and efficient constructions. Published

by Department of Computer Science, Johns Hopkins University, USA.

- Caralli, R. and Wilson, W. (2004). The challenges of security management.
Networked systems survivability program, SEI. [cited 2007 12th March] .

- Davis, T. (2003) RSA Encryption, published by Hill, NY.

101

Doumen, J. Brinkman, R. Feng, L. Hartel, P.H. and Jonker, W. (2004). Efficient
tree search in encrypted data. University of Twente, Enschede, the Netherlands, 1-

10.

Fisher, D. RSA (2010). Experts expect several ciphers to be cracked soon.
[online] available: http://threatpost.com/en_us/blogs/experts-expect-several-ciphers-

be-cracked-soon-030210 [accessed September 16, 2010] .

FIPs. (1995). Secure hash standard, Federal Information Processing Standards

Publication.

Gou, C. Zhao, R. and Diao, J. (2010). A load-balancing scheme based on bloom
filters, IEEE. Issue Date: 22-24 Jan. 2010, Future Networks, 2010. ICFN '10.

Second International Conference, 404 — 407.

Kammuller, F. and Kammuller, R. (2009). Enhancing privacy implementations of

database enquiries. Issue Date: 24-28 May. 2009, Venice, Mestre, Italy.

Kleinjung, T. Aoki, K. Franke, J. Lenstra, A. K. Thomé, E. Bos, J. W. Gaudry, P.
Kruppa, A. Montgomery, P.L. Osvik, D.A. te Riele, H. Timofeev, A.
Zimmermann, P.(2010). Factorization of a 768-bit RSA modulus.

Leeuw, K.M. and Jan Bergstra, J. (2007). The History of Information Security: A
Comprehensive Handbook, Elsevier Science, 251-284.

Li, J. Krohn, M. Mazi'eres, D. and Shasha, D. (2004). Secure untrusted data
repository (SUNDR). USENIX Association. NYU Department of Computer

Science, 1-15 .

Needham, R. and Schroeder, M. (1978). Using encryption for authentication in
large networks of computers, Communications of the ACM, 21(12).

102

Needham, R. and Schroeder, M. (1987). Authentication revisited, ACM Operating
Systems Review, 21(1).

Pesante, L. (2008) Introduction to information security, Carnegie Mellon
University, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1-3.

Prince, A. (2002). Murach's Beginning Visual Basic .NET. (1st edition), Mike

Murach & Associates.

Rivest, R., Shamir, A. and Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2), 120-126.

SANS Institute, (2001). History of encryption: Version 2, published by: SANS.

Schneier, B. (1996). Applied cryptography: protocols, algorithms, and source
code in C, (2nd edition), NJ: John Wiley & Sons .

Schneier, B. (2005) Managed security monitoring: Network security for the 21st
century, NJ: John Wiley & Sons .

Shiraki, T. Teranishi, Y. Takeuchi, S. Harumoto, K. and Nishio, S. (2009). A
Bloom filter-based user search method based on movement records for P2P
network, 1EEE, National Institute of Information and Communications

Technology, 1- 4.

Song, D., Wagner, D. and Perrig, A. (2000). Practical techniques for searches on

encrypted data, in Proc. 2000 IEEE Symp. On Security and Privacy (SP '00), Los
Alamitos, CA: IEEE Computer Society, 2000, 44-55.

Stamp, M. (2006). Information Security. NJ: John Wiley and Sons.

103

- Willis, T. (2004). Beginning VB.NET Databases. (1st edition), Wrox Press.

