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Recognition of Gene Acceptor Site Based on Multi-objective Optimization
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Abstract        A new method for predicting the gene acceptor site based on multi-objective optimization is
introduced in this paper. The models for the acceptor, branch and distance between acceptor site and
branch site were constructed according to the characteristics of the sequences from the exon-intron database
and using common biological knowledge. The acceptor function, branch function and distance function
were defined respectively, and the multi-objective optimization model was constructed to recognize the
splice site. The test results show that the algorithm used in this study performs better than the SplicePredictor,
which is one of the leading acceptor site detectors.
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The process of cutting introns out of immature RNAs
and stitching the exons together to form the final product
is called RNA splicing. Most introns in nuclear mRNA
precursors begin and end in the same way: exon/GU-
intron-AG/exon. This is called the GU-AG rule [1]. The
product of the nuclear mRNA precursor splicing, in which
an adenosine nucleotide in the middle of the intron attacks
the phosphodiester bond between the first exon and the
beginning G of the intron, looks like a lariat. However,
GU-AG motifs occur so frequently that a typical intron
will contain several GUs and AGs within it. Therefore,
using the GU-AG rule alone to predict the acceptor site
will result in many false sites. The sequence characteris-
tics around the donor and the acceptor site must be
considered simultaneously.

Many methods have been developed for recognition of
the acceptor site, such as the hidden Markov model, the
BP neural network and the supported vector machine.
Acceptor site recognition based on the hidden Markov

model [2] considers the relativity between the nucleotides
and the conservative sequences around the acceptor site.
When applying the back propagation network to recog-
nize the acceptor site [3,4], the learning factor and
momentum factor affect the systematic error greatly.
Raising the learning factor will increase the learning speed
and decrease the error quickly, but will eventually make
the neural network system unstable. Nowadays, the
construction of the neural network is mainly based on
experience and knowledge, especially when selecting the
structure and parameters of the neural network.
Additionally, the low learning speed of the neural network
also limits its application in acceptor site prediction. During
the prediction of the acceptor site, a high-level recogni-
tion of false sites and true sites at the same time is required
as the number of false acceptor sites is greater than that
of true sites in the intron. When employing the supported
vector machine for acceptor site prediction [5], we can
adjust the threshold to increase the recognition of one
factor. But the increase is at the cost of a decrease of
another factor.

In this paper, we introduce a novel algorithm to predict
the acceptor site. By integrating the information relating
to the acceptor site, branch site, distance between acceptor
site and branch site, and base content, we can predict
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the acceptor site with multi-objective optimization. The
results are compared with those obtained from the
SplicePredictor [6].

Materials and Methods

Data collection

The exon-intron database (EID, available at http://www.
meduohio.edu/bioinfo/eid/index.html) [7] was used for
the analysis of the acceptor site. First, we downloaded
51,289 protein-coding gene sequences in which 287,209
exons were included. Second, we eliminated 17% of the
sequences that were redundant and thus obtained 42,460
gene sequences. Third, by comparing the genome
sequence with mRNA sequences, we constructed a subset
with an approved acceptor site. This process resulted in a
set of 11,242 genes that included 62,474 exons in total.
Finally, we divided the data set of 11,242 genes into two
sets randomly. One set, which included 70% of the genes
of the data set, was the training set. The remaining 30%
of the genes constituted the testing set.

Construction of signal model

The acceptor signal model is defined as the statistical
character of the sequences in the intron 3' end, while the
acceptor site is defined as the first nucleotide in the exon.
For every sequence in the training set, by extracting 7 nt
from the 3' end of the intron and the acceptor site following
the intron, we obtain a sub-sequence of 8 nt. By computing
the occurrence frequencies of the four bases A, T, G and
C at the corresponding positions of the 8 nt sub-sequences,
we obtained the statistical distribution of the 8 nt sub-
sequences shown in Table 1, which is the acceptor signal
model.

Branch site is located in the region of 18 nt to 40 nt
upstream of the intron 3' terminal and its consensus
sequence can be written as Py80NPy87Pu75A100Py95, where

Py, Pu and N are pyridine, purine and any base,
respectively, while the suffix indicates the frequency with
which a base is found at that position. In this consensus
sequence, base A is completely conservative and is called
the branch site in our algorithm. The consensus sequence
Py80NPy87Pu75A100Py95 is used to extract the branch site
region.

For every sequence in the training set, we first cut off
50 nt upstream of the acceptor site to construct a set
consisting of 50 nt sub-sequences. According to the branch
site analysis above, every 50 nt sub-sequence contains
one branch site. Then we extracted the branch site by
analyzing the 50 nt sub-sequences with the template
Py80NPy87Pu75A100Py95.

We compared the first 6 nt in the 3' end of a 50 nt sub-
sequence with the Py80NPy87Pu75A100Py95 template and com-
puted its score by multiplying the probabilities of the six
nucleot ides  a t  the  corresponding pos i t ion  in
Py80NPy87Pu75A100Py95. For example, suppose the first 6
nt in the 3' end of one 50 nt sub-sequence is “CAGTCA”,
then the score of this 6 nt sub-sequence is calculated as
follows:

0.80×0.5×0.87×0.75×0×0.05=0

The score calculated is the branch site probability of
the 6th nucleotide of the 3' end, which is “C” in this
example. We repeated the process for every subsequent
nucleotide in the 3' end of the 50 nt sub-sequences. In
this way, we obtained the branch site probability of every
nucleotide except the last 5 nt of the 50 nt sub-sequence.

For every 50 nt sub-sequence, we took out the 6 nt
with the highest branch site probability to construct a new
data set. By computing the probability of each nucleotide
at the corresponding position of the 6 nt sub-sequences
in this new data set, we obtained the statistical distribu-
tion of the 6 nt sub-sequences shown in Table 2, which
is the branch site model.

The distance between the branch site and acceptor site
is defined as the number of nucleotides from the acceptor

1 2 3 4 5 6 7 8

A 0.132120 0.126746 0.103878 0.242574 0.045736 0.984353 0.002442 0.229262
T 0.431535 0.436681 0.521663 0.242669 0.255678 0.002555 0.006658 0.110313
G 0.124229 0.104465 0.084434 0.269514 0.009245 0.004682 0.988862 0.522591
C 0.312116 0.332108 0.290022 0.245233 0.689341 0.008410 0.002038 0.137824

Table 1        Acceptor signal model
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site to the branch site. By making use of the set of 50 nt
sub-sequences constructed above and the positions with
the highest branch site probability, we derived the distance
between the acceptor site and branch site for every
sequence. By carrying out a statistical analysis of all the
distance data, as shown in Fig. 1, we found that the pro-
bability that the distance is below 9 nt was zero. Therefore,
the branch site could not have been located very close to
the intron. From Fig. 1, we can also see that the distance
between the branch site and acceptor site is 9 to 48 nt.

Table 1. For example, suppose W8(i)= “ACTATGCG”.
From Table 1, we obtain:

f1(i)=ln0.132120+ln0.332108+ln0.521663+ln0.242574
+ln0.255678+ln0.004682+ln0.002038+ln0.522591

Since branch site j is located 9–48 nt upstream of the
corresponding acceptor site i, j is constrained to j=i–48,
i–47,…,i–9. In addition, the branch site is the fifth base
in the branch site template, so we have j≥5. Denoting
i0=max{5,i–48}, then j is constrained to j=i0,i0+1,…,i–9.
As for the acceptor site i, it must satisfy the condition of
i–9≥5. Thus we have i=14,15,…,N. Considering that the
acceptor site is rarely located at the 5' or 3' end of a
sequence, we take i from 26 to N–25 in our algorithm.

Since the branch site is located at the 5th base of a 6 nt
sequence, we define a sub-sequence W6(j) as follows:

}...{}...{)( 1346216 +−−== jjjjjj xxxwwwjW

Employing the branch site model, we define the signal
function of branch site j corresponding to the acceptor
site i as follows:

)](ln[)( 2
6

1

*
2 jk

k
wpjf ∑=

=
, j=i0,i0+1,…,i–9

where p2 is the branch site model; that is, the occurrence
frequency of the corresponding base in Table 2. For the
acceptor site i, we define its branch site signal function
as the maximum of its signal functions at corresponding
branch sites:

}9,,...1,)(max{)( 00
*

22 −+== iiijjfif ,
 i=26,27,…,N–25     (3)

Let j* be a branch site. Then, the branch-acceptor dis-
tance function is defined as:

)](ln[)( *
33 jipif −=                                                          (4)

where p3 is the branch-acceptor distance model, that is,
the distance probability in Fig. 1.

The GC content is an important signal of the splice

Algorithm of multi-objective optimization

For a sequence x with the length N, W8(i) is defined as
its sub-sequence with the length 8 nt:

}...{}...{)( 678218 iiiiii xxxwwwiW −−== , i=8,9,…,N          (1)

The acceptor site signal function is defined as:

])[ln()( 1
8

1
1 ik

k
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=
, i=8,9,…,N                                 (2)

where k represents the kth nucleotide of the ith sub-
sequence, and p1 is the acceptor signal model, that is,
the occurrence frequency of the corresponding base in

1 2 3 4 5 6

A 0.042652 0.152566 0.026258 0.324734 0.999989 0.002425
T 0.528883 0.339141 0.657152 0.134253 0.000011 0.498827
G 0.059365 0.154068 0.013853 0.326377 0 0.012468
C 0.369100 0.354225 0.302737 0.214636 0 0.486220

Table 2        Branch site model

Fig. 1        Statistical distribution of the distance between the
acceptor site and branch site
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site, so we define the GC content function as:

25
)()()( downGCupGC

GC
iNiNiD −=                                         (5)

in which, NupGC(i) and NdownGC(i) are the number of GC
within 25 nt upstream and downstream of the position i,
respectively.

Model of multi-objective optimization

The correct recognition of the splice site i must satisfy
the conditions of a strong acceptor site signal f1(i), a strong
branch site signal f2(i) in a 10–45 nt region upstream of
position i and an optimum branch-acceptor distance
function f3(i). In addition, the downstream GC content
of the position i must be obviously greater than the
upstream GC content of the position i; that is, the value
of the GC content function DGC(i) should be a positive
number. Therefore, the problem of predicting the splice
site can be written as a multi-objective optimization:

;
)]([max
)]([max
)](max[
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                             s.t. DGC(i)>C, i=26,27,…,N–25     (6)

where C is a given constant. Then the prediction of the
splice site becomes a problem of finding a non-inferior
solution in the solution space of the multi-objective
optimization in Equation (6). According to optimization
theory, the multi-objective optimization shown in Equation
(6) can be transformed into a single-objective optimization
as follows:

])([)()()(),( 332211 CiDifliflifliV GC −+++= λλ        (7)

where λ is Lagrange’s multiplier; l1, l2 and l3 are the weight
coefficients of f1(i), f2(i) and f3(i), respectively; and C is
the threshold of the GC content function.

The algorithm for the multi-objective optimization
shown in Equation (6) is illustrated in detail as follows:
Step 1: evaluate the C value. Statistical analysis shows
that the GC content in exons near the acceptor is about
47.68% and that in introns is about 52.32%. For simplicity,
we consider zero as the threshold.
Step 2: optimize respectively each of the objective func-
tions in Equation (6); that is, solve the following single-
objective optimization problem:

)](max[ ifm , m=1,2,3;
                                            s.t. DGC(i)>C, 26≤i≤N–25

We obtain the optimum solutions im* and the reciprocal

of Lagrange’s multipliers γm (m=1,2,3).
Step 3: compute the weight coefficients by Method α;
that is, solve the following system of linear equations and
determine the value of l1, l2 and l3:
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Step 4: take the reciprocal of Lagrange’s multiplier as:

332211
1 γγγ
λ

lll ++=

Step 5: optimize Equation (7), and calculate the position
i with the highest score. Then we finally obtain the opti-
mum acceptor site.

Results and Discussion

In order to gauge the performance of the multi-objec-
tive optimization prediction method (MOPM), we com-
pared the prediction result obtained using MOPM with
that obtained by the SplicePredictor method (SPM) for
the testing set we constructed. In our analysis, we used
the Precision and Recall measures as measures of recog-
nition performance [8]. These can be defined as:

FPTP
TP
+

=Precision       and     FNTP
TP
+

=Recall

where TP, FP and FN represent the number of true
positives, false positives and false negatives, respectively.
The results predicted by MOPM and SPM are shown in
Table 3.

From Table 3, we can see that the Precision measure
of MOPM reached 85.6%, which is better than that of
SPM. The Recall measures for MOPM and SPM were
71.2% and 66.6%, respectively. The results show that
the MOPM algorithm performs very well.

In order to improve the performance of our algorithm,
we analyzed the sequences which were wrongly predicted.

Measure Precision Recall

MOPM 85.6% 71.2%
SPM 74.5% 66.6%

Table 3        Comparison of MOPM and SPM
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There are two main causes of error. The first cause of
error is that the false acceptor site has strong signals,
especially the f1(i), and DGC(i) in our system of equations
is too high. Modulation of the weight coefficients of these
functions may improve the recognition accuracy. The
second cause of error is that the true splice site is too
weak to be recognized. Selecting the proper threshold of
the GC content function also helps to improve the accuracy
of recognition.

Conclusion

Based on the sequence characteristics from the exon-
intron database and biological knowledge, we calculated
the acceptor site function, the branch site function and
the acceptor-branch distance function. We also con-
structed the multi-objective optimization model and used
it to recognize the splice site. The results show that the
multi-objective optimization algorithm performs well and
is a novel and promising method for the prediction of the

acceptor site.

References

  1 Tong G eds. Gene and its Expression. Beijing: Science Press 1996
  2 Xia H, Zhou Q, Li Y. Application of hidden Markov model in the recogni-

tion of splicing sites. J Tsinghua Univ (Sci & Tech) 2002, 42: 1214–1217
  3 Ogura H, Agata H, Xie M, Odaka T, Furutani H. A study of learning splice

site of DNA sequence by neural networks. Comput Biol Med 1997, 27: 67–
75

  4 Sun J, Xu J, Ling LG, Shen RQ, Chen RS. Predicting the splicing sites of
mRNA by neural network. Acta Biophysica Sinica 1993, 9: 127–131

  5 Wen F, Lu X, Sun ZR, Li YD. Splice sites prediction using support vector
machine. Acta Biophysica Sinica 1999, 15: 733–739

  6 Pertea M, Lin X, Salzberg SL. GeneSplicer: A new computational method
for splice site prediction. Nucleic Acids Res 2001, 29: 1185–1190

  7 Saxonov S, Daizadeh I, Fedorov A, Gilbert W. EID: The exon-intron
database––an exhaustive database of protein-coding intron-containing genes.
Nucleic Acids Res 2000, 28: 185–190

  8 Saeys Y, Degroeve S, Aeyels D, Rouze P, van de Peer Y. Feature selection
for splice site prediction: A new method using EDA-based feature ranking.
BMC Bioinformatics 2004, 5: 64

Edited by
Yi-Xue LI

 by guest on M
ay 19, 2016

http://abbs.oxfordjournals.org/
D

ow
nloaded from

 

http://abbs.oxfordjournals.org/

