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Bmi-1, a polycomb gene family member, plays an
important role in cell cycle regulation, cell immortaliza-
tion, and cell senescence. Recently, numerous studies
have demonstrated that Bmi-1 is involved in the regu-
lation of self-renewal and differentiation of stem cells.
However, the molecular mechanism underlying this bio-
logical process remains largely unclear. In the present
review, we summarized the function of Bmi-1 as a tran-
scriptional regulator of gene expression, with particular
reference to stem cells.
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Introduction

Stem cells are characterized as unspecialized precursor
cells that possess the multipotent ability to self-renew
and differentiate into tissue-specialized cells. Both tissue
development and homeostasis are mediated by stem
cells, including embryonic stem (ES) cells and tissue
stem cells (or adult stem cells) [1]. ES cells that are
derived from the inner cell mass of blastocyst-stage
embryos are capable of developing into the fetus. During
the process, these cells generate tissue stem cells, pro-
genitor cells, and eventually, every cell type that consti-
tutes an organism. Tissue stem cells include somatic and
germline stem cells, which develop, maintain, and repair
their resident tissues in adult organisms. Self renewal is
the hallmark of stem cells. Stem cells could continuously
divide into two types of daughter cells. One type of
daughter cell would take on the identity of the parent
cell, and the other could transform into a progenitor cell
that would further differentiate into specialized cell
types. Both ES and tissue stem cells are capable of

producing various types of differentiated cells and under-
going continuous self-replication. Stem cell research has
enlightened the scientific community on the effective
cell-based therapies for certain diseases such as diabetes,
neurodegenerative diseases, and cancer [2]. It has been
reported that the proliferation and differentiation of stem
cells might be related to the regulation of Hox
(homeobox-containing) genes, which are crucial for cell
fate determination and proliferation and for the regu-
lation of the development of an organism [3,4]. The tran-
scriptional repression and activation of Hox genes could
be regulated by the polycomb group (PcG) and
Trithorax-group (TrxG) genes, which are essential for
the maintenance of the physiological levels of the Hox
genes during development [5,6]. PcG family proteins,
which are well-known epigenetic gene silencers, have
been demonstrated to be associated with the self-renewal
and differentiation of stem cells [5]. Moreover, Bmi-1,
the first identified PcG gene, has also been documented
to be involved in the transcriptional repression of Hox
genes and affect the stem cell self-renewal, embryonic
development, and proliferation [7–10]. In the present
review, we summarized the function of Bmi-1 as a tran-
scriptional regulator of gene expression, with particular
reference to stem cells.

Genetic Structure of Bmi-1

Polycomb group proteins act as epigenetic gene silencers
with essential roles associated with organism develop-
ment through the formation of a minimum of two multi-
meric complexes, i.e. the polycomb repressive complex
1 (PRC1) and the polycomb repressive complex 2
(PRC2) [5,7,11–15]. B-cell-specific Moloney murine
leukemia virus integration site 1 (Bmi-1), which is one
of the core members of the PRC1 complex, was
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identified as an oncogene that cooperates with c-myc in
the initiation of lymphoma [7,11]. The Bmi-1 gene loca-
lizes on human chromosome 10p11.23 and extends over
4.9 kb, which comprises 10 exons and 9 introns. The
length of the Bmi-1 cDNA is approximately 3.2 kb (A ¼
959, C ¼ 591, G ¼ 678, and T ¼ 975) and further, it
encodes a 36.9-kDa nuclear protein consisting of 326
amino acids. The Bmi-1 protein contains a conserved
RING finger domain in its N-terminal end and a central
helix-turn-helix-turn-helix-turn motif (H-T-H-T), which
is required for inducing telomerase activity and immorta-
lization of human epithelial cells [12,16,17].

Role of Bmi-1 in Cancer Initiation
and Progression

Bmi-1 has been demonstrated to be involved in multiple
biological processes, such as embryonic development,
organ formation, tumorigenesis, stem cells stabilization,
and differentiation [8]. Bmi-1 is expressed ubiquitously
in almost all tissues and its expression is observed to be
slightly higher in the brain, spinal cord, kidney, lungs,
gonads, and the placenta. However, many studies have
shown that Bmi-1 expression is frequently upregulated in
various types of human cancers, including lung cancer,
ovarian cancer, acute myeloid leukemia, nasopharyngeal
carcinoma, breast cancer, and neuroblastoma, which indi-
cates that Bmi-1 might play important roles in cancer
initiation and progression [18–23]. The oncogenic
feature of Bmi-1 has also been reported to be associated
with the protection of cells from apoptosis. It has been
shown that the number of lymphocytes is markedly
reduced in the spleen and the thymus due to increased
apoptosis in Bmi-12/2 null mice [8]. Ectopic expression
of Bmi-1 protects keratinocytes from stress
agent-induced apoptosis and the expression of Bmi-1
abrogates MYCN-induced sensitization of SHEP1 cells,
thereby protecting cells from apoptosis [23]. In addition,
numerous studies have demonstrated that expression of
Bmi-1 is statistically associated with its clinical value;
this suggests that Bmi-1 might be used as a diagnostic
and prognostic marker of human cancer. It has been
reported that the expression of Bmi-1 is upregulated in
nasopharyngeal carcinoma cell lines and nasopharyngeal
carcinoma tumors, and high expression level of Bmi-1 is
positively correlated with poor prognosis in nasopharyn-
geal carcinoma patients [21]. Daniela et al. have reported
that high expression of Bmi-1 was observed in 41 of 64
(64%) primary melanoma tissues and 117 of 165 (71%)

metastatic melanoma as compared with that in the
primary melanoma, indicating that Bmi-1 expression
might be associated with clinical progress of malignant
melanoma [24]. The clinical significance of Bmi-1 has
also been demonstrated in cases of hepatocellular carci-
noma, gastric carcinoma, non-small cell lung cancer
(NSCLC), oligodendroglial tumor, and breast cancer
[25–29].

Association between Stem Cells and Bmi-1

Increasing evidences have indicated that Bmi-1 plays an
important role in the self-renewal and differentiation of
human stem cells. Park et al. have found that Bmi-1 is
highly expressed in adult and fetal mouse and adult
human hematopoietic stem cells (HSCs) using reverse
transcription-polymerase chain reaction (RT-PCR) and
gene expression analysis [10]. Furthermore, the number
of HSCs has been shown to be markedly reduced in
postnatal Bmi-12/2 mice as compared with that in the
fetal liver of Bmi-12/2 mice. In addition, they have also
demonstrated that the transplanted fetal liver acquired
from Bmi-12/2 mice could only transiently contribute to
hematopoiesis. Moreover, the expression of genes that
are associated with stem cell self-renewal, cell survival,
transcriptional factors, and cell proliferation, including
p16INK4a and p19ARF, in fetal liver cells of the Bmi-12/2

mice are observed to be completely altered. All these
results indicate that Bmi-1 was necessary for the gener-
ation and differentiation of self-renewing adult HSCs.
Lessard et al. have reported that the expression of Bmi-1
in human primitive cells was higher than that in CD342

cells, which further confirmed that Bmi-1 was essential
for the self-renewal, proliferation, and differentiation of
HSCs, progenitor cells, and leukemia stem cells (LSCs),
as well as for the implantation of stem cells in vivo and
in vitro [30]. In addition, Lessard et al. have examined
the number, migration, colony, and marrow hematopoie-
tic microenvironment of fetal liver cells and fetal liver
hematopoietic stem cells of Bmi-12/2 mice. They found
that Bmi-12/2 mice with defective hematopoiesis gener-
ated much fewer fetal liver HPCs (1% when compared
with 27% in the Bmi-1þ/þ group), which was most prob-
ably due to the inappropriate self-renewal ability of
HSCs. However, these experiments excluded factors that
could affect marrow hematopoiesis, such as defective
HSC generation, inability to recruit the HSCs to the
bone marrow, and impairment of the hematopoietic
microenvironment [9,10]. Additionally, a reconstitution
experiment was conducted to examine the restoration of
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hematopoietic function in mice that were exposed to
lethal radiation and transplanted with embryonic hemato-
poietic bone marrow cells from either Bmi-1þ/þ or
Bmi-12/2 mice [10]. The results showed that the hema-
topoietic capacity was lower in Bmi-12/2 recipient mice
at 4 weeks following transplantation and the donor-
derived HSCs in the recipient bone marrows were
undetectable at 8 weeks. No Bmi-1 – / – -derived HSCs
were detected in the peripheral blood of the recipient
mice at 16 weeks; this indicated that the hematopoietic
capacity of the bone marrow cells was completely depen-
dent on the expression of exogenous Bmi-1. Therefore,
these results suggest that the decrease in the hematopoie-
tic capacity of Bmi-12/2 mice was attributable to the
defective self-renewal capability of their HSCs [10].
Further, it has been reported that Bmi-1 plays an essen-
tial role in the regulation of the self-renewal of neural
stem cells (NSCs). Downregulation of the expression of
Bmi-1 in NSCs could lead to lower proliferation and
self-renewal ability both in vivo and vitro [31].
Upregulation of Bmi-1 expression could induce the self-
renewal ability of NSCs by transcriptional repression of
INK4a and ARF [32]. Heffner et al. have also demon-
strated that Bmi-1 plays a crucial role in the process of
self-renewal in CD8þ T cells and promotes cellular
senescence [33].

It has been reported that the epithelial components of
mammary glands consist of stem cells and have the
capacity to undergo self-renewal and multilineage differ-
entiation [34]. The Hedgehog pathway has been shown
to be associated with the regulation of the self-renewal
and differentiation of breast stem cells; further, factors in
the hedgehog pathway were found to be highly
expressed in mammary stem/progenitor cells [35,36]. It
has been demonstrated that Bmi-1 is a downstream gene
in the Hedgehog pathway, which implied that the modu-
lation of the Hedgehog pathway associated with the self-
renewal and differentiation of mammary stem cells might
be mediated by Bmi-1. Moreover, Bmi-1 expression is
upregulated up to six times when the Hedgehog pathway
is activated. However, its expression is significantly
downregulated when the Hedgehog pathway is blocked
by small-interfering RNA (siRNA) [36].

Cancer Stem Cells

Tumor tissues are composed of heterogeneous groups of
cells. Some cells are identified as cancer stem cells that
are capable of causing constant expansion of existing
tumors or form new tumors in the body [37]. Hewitt

et al. have found that only 1–4% of the transplanted
cells in the spleen can retain the ability of cloning after
transplanting murine leukemia cells into mice with
similar genetic backgrounds as donors. This observation
indicated that only part of the cells from tumors could
form tumors again [38]. Subsequently, Trott further
demonstrated that only the cells that were isolated from a
particular subgroup have high cloning ability; moreover,
he proposed that ,1% of tumor cells possess the quality
of cancer stem cells that retain their ability to undergo
self-renewal and differentiation into specialized cells
[39]. In 1997, human LSCs were identified by Bonnet
et al. [40]. It was shown that even though different types
of leukemia cells could be isolated from leukemia
patients, only those whose surfaces expressed markers,
such as CD34þCD382Thy-12, possess the ability to
undergo self-renewal and form tumor in vitro [40].

In addition, AI-Hajj et al. identified and isolated
cancer stem cells of CD44þCD242/low lineage from
breast cancers tissues [41]. Furthermore, they demon-
strated that these cells could be considered to be breast
tumor-initiating cells since as few as 100 cells with
CD44þCD242/low characteristic were observed to be
able to form tumors in mice, whereas tens of thousands
of cells without these phenotypes failed to form tumors
[41]. Moreover, the expression of Bmi-1 has been found
to be upregulated up to 5-fold in CD44þCD242/lowlin2

cells as compared with that in the cells isolated from the
same tumor, which are the cells that are negative for
cancer stem cell marker [36]. All these findings strongly
suggest the existence of cancer stem cells.

Biological Functions of Bmi-1 in the
Regulation of Stem Cells and Cancer
Stem Cells

A number of studies have demonstrated that Bmi-1 plays
an important role in the self-renewal and differentiation
of human hematopoietic and LSCs [9,10,20,42,43].
Lessard et al. have reported that even though acute
myeloid leukemia (AML) could develop in mice that
were transplanted with bone marrow cells derived from
either Bmi-1þ/þ or Bmi-12/2 recipient mouse, the stem
cell number in the peripheral leukemia cells from Bmi-1
wild-type mice was significantly higher than that in
Bmi-1-knockout mice [30]. Furthermore, the number of
leukemia cells derived from Bmi-12/2 mouse reduced
by 15+4 times when compared with that in the control
cells from Bmi-1 wild-type mouse following 10 days of
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culture in vitro [30]. They further observed that the
number of leukemia cells derived from Bmi-12/2 mouse
in the S-phase reduced significantly and most of the
cells were accumulated in the G1 phase; moreover, the
number of apoptotic cells increased and their colony-
forming abilities decreased. All these results strongly
implied that Bmi-1 has a critical and dose-dependent
role in regulating the proliferation of cancer cells and the
development of leukemia. Medulloblastoma is a type of
brain tumor that originates from progenitor cells from
the external granular layer of the external cerebellum. It
has been shown that knockdown Bmi-1 in human
medulloblastoma cell lines causes inhibition of prolifer-
ation, loss of clonogenic survival, and anchorage-
independent growth in vitro, as well as suppression of
tumor formation in vivo [44]. Furthermore, all these
phenomena have been demonstrated to be associated
with increase in the expression of various important
developmental regulators and differentiation factors, such
as matrix metalloproteinase 3 (TIMP-3), hedgehog inter-
acting protein (HHIP), and inhibin A (INHBA) genes. It
is particularly noteworthy that the function of Mel-18,
another Polycomb group family member, has a function
that overlaps with that of Bmi-1 in the regulation of the
abovementioned biological processes [44].

It has been reported that the cooperation of Bmi-1
with c-myc could induce telomerase activity and downre-
gulate p16INK4a and p19ARF expression; this allows cells
to bypass senescence and immortalizes them [21–
23,45]. Human telomerase reverse transcriptase (hTERT)
is capable of stabilizing telomeres in stem cells; this
ability is important for the self-renewal and differen-
tiation properties of the latter [46–48]. However, the
molecular mechanism underlying the regulation of the
differentiation of human stem cells by Bmi-1 remains
largely unknown. It has been suggested that Bmi-1
might play a role in the regulation of stem cells via the
stabilization of telomeres since it has been proven that
Bmi-1 induces hTERT activity in normal mammary epi-
thelial cells and nasopharyngeal epithelial cells [21,22].
Another possible mechanism of Bmi-1 on stem cell
regulation is the repression of p16INK4a and p19ARF by
Bmi-1 [17,45,49]. The proteins p16INK4a and p19ARF,
transcribed from the same gene, namely INK4a, is
tightly associated with the regulation of the cell cycle
[50,51]. The p16INK4a protein could inactivate Cdk by
directly binding to Cdk4 and Cdk6, and lead to the sup-
pression of the phosphorylation of the retinoblastoma
(Rb) susceptibility protein and Cdk-dependent Rb-
associated protein; as a consequence, the downstream

gene of Rb is repressed and the cell cycle is arrested in
the G1/S phase [52,53]. The p19ARF (homolog of human
p14ARF) protein is capable of stabilizing p53 by antago-
nizing MDM2 and activating p53-dependent transcrip-
tion; as a result, the cell cycle was arrested in the G1
and G2/M phases and that, in turn, lead to apoptosis
[54,55]. The p16INK4a and p19ARF have also been
demonstrated to be important targets of Bmi-1 [49,56].
Therefore, Bmi-1 could promote cell proliferation by
suppressing p16/Rb (retinoblastoma protein) and/or
p19ARF/MDM2/p53 tumor suppressor pathways [57].
This has been supported by the observation that upregu-
lation of Bmi-1 expression could activate the self-
renewal ability of NSCs and lead to nervous system
development through the inhibition of the progress of
p16INK4a- and p19ARF- mediated senescence and apopto-
sis in the latter [56].

The Hedgehog signaling pathway has been demon-
strated to be associated with the regulation of mammary
stem cell self-renewal and multilineage differentiation,
which are mediated by Gli transcription factors [36].
Interestingly, both Gli1- and Gli2-overexpressing mam-
mospheres are also observed to display higher Bmi-1
expression levels. While downregulation of Bmi-1 could
significantly reduce the effects of Hedgehog signaling
activation on both primary and secondary mammosphere
formation, which suggested that that the effects of
Hedgehog signaling pathway on mammary stem cells or
progenitor cells were mediated by the polycomb gene
Bmi-1 [36]. Recently, Yang et al. reported that the
ectopic expression of SALL4, which was elevated in
human leukemia cell lines and primary acute myelocytic
leukemia, could enhance the multipotency and self-
renewal ability of HSCs. A further study demonstrated
that Bmi-1 expression could be upregulated by SALL4
through the methylation of histones H3K4 and H3K9 in
the Bmi-1 promoter [43]. Further, Bmi-1 has been shown
to be involved in the regulation of stem cells from type-I
neuroblastoma through the regulation of the self-renewal
of these stem cells and controlling their specific differen-
tiation or lineage commitment in a concentration-
dependent manner [58]. The activation of the sonic
hedgehog (Shh) pathway has been shown to be involved
in the deregulated proliferation of progenitor cells and to
lead to medulloblastoma development. All these results
implied that Bmi-1 might be the downstream target of
Shh signaling and that overexpression of the Shh
pathway could induce rapid Bmi-1 expression [59].
Moreover, Bmi-1 has been reported to facilitate the
development of Th2 cells via the stabilization of the

The role of Bmi-1 in cancer stem cell regulation

Acta Biochim Biophys Sin (2009) | Volume 41 | Issue 7 | Page 530

 by guest on M
ay 24, 2016

http://abbs.oxfordjournals.org/
D

ow
nloaded from

 

http://abbs.oxfordjournals.org/


GATA3 transcription factor in a RING finger-dependent
manner [60]. However, the underlying mechanisms are
still unclear. Using Bmi-1-green fluorescent
protein-knock-in mice as a model, Hosen et al. further
confirmed that the expression of Bmi-1 is high in prema-
ture HSCs and demonstrated that Bmi-1 is downregu-
lated once the HSCs have been differentiated into a
particular lineage [61]. By employing this animal model,
they could not only separate cells with differential Bmi-1
expression into distinct subpopulations but also provide
evidence that Bmi-1 is involved in stem cell differen-
tiation [61].

Recently, a number of studies have documented that
the activation of nuclear factor kappa B (NF-kB), which
is a transcription regulator, is associated with the regu-
lation of stem cells. Aberrantly active forms of NF-kB
have been observed in different types of cancer, includ-
ing breast cancer, colon cancer, non-small cell lung
cancer, squamous head and neck cancer, and gastric
cancer [62–66]. It has been reported that the NF-kB
pathway is activated in LSC population but not in
normal hematopoietic stem cells [67]. Inhibition of
NF-kB with the proteasome inhibitor MG-132, which is
a well-known inhibitor of NF-kB, could induce
leukemia-specific apoptosis [68]. NF-kB pathway inhibi-
tors preferentially inhibit breast cancer stem-like cells
[69]. Tumor necrosis factor (TNF-a) could promote the
proliferation of adult NSCs via the IKK/NF-kB signaling
pathway [70]. Li et al. found that abnormal activation of
NF-kB at an early stage of mesenchymal stem cell not
only inhibits the differentiation of mesenchymal stem
cells but also enhances the proliferation and invasion
abilities of fibroblast-like synoviocytes (FLSs) [71].

However, the biological significance of NF-kB pathway
on stem cells remains largely unknown. In 2001, Cheng
et al. reported that the Notch-1 signal transduction
pathway, which is an important regulatory mechanism of
stem cells, is associated with the induction of NF-kB
expression [72]. They found that the DNA binding and
transcriptional activities of NF-kB were dramatically
decreased in HPCs that were derived from Notch-AS-Tg
(Notch-1 antisense transgenic) mice; further, it was
found that the decrease in NF-kB activity in HPC was
due to transactional repression of NF-kB subunits by
Notch-1 factor. It has been reported that Bmi-1 is upre-
gulated by NF-kB in Epstein–Barr Virus-negative
Hodgkin lymphoma (HL) cells [73]. In brief, Bmi-1
plays important roles in the regulation of stem cells via
the activation of multiple pathways (Fig. 1).

However, the precise mechanism of Bmi-1 on the
regulation of chromatin remodeling still remains largely
unclear. Cao et al. demonstrated that Bmi-1 and other
components of the PcG complexes bind to the promoter
of HoxC13 and lead to the H2A ubiquitylation and Hox
gene silencing, which might be implicated in the
changes observed in cancer and stem cell self-renewal
abilities that occur as a result of Bmi-1 function [74]. In
addition, Posterior Sex Combs, a subunit of the
Drosophila PRC core complex, has been shown to
inhibit chromatin remodeling and transcription efficiently
by forming an assembly with RING1 to recruit chroma-
tin [75].

Recently, an 11-gene signature was described as a
conserved Bmi-1-driven pathway, which defines stem
cell-ness of highly invasive tumors of multiple tissue
origin and correlates with therapy failure [21].

Figure 1 Bmi-1 plays important roles in the regulation of stem cells via the activation of multiple pathways Bmi-1, which could be

upregulated by SALL4 and Hedgehog (Hh) signal, regulates stem cell self-renewal through repression of Hox genes and INK4a locus genes,

p16INK4a and p19ARF, and activation of telomerase, transcriptional factor GATA3, and NF-kB pathway. These genes and signaling are likely play a

role in stem cell fate decisions including the prevention of senescence, apoptosis and differentiation, as well as the induction of immortalization and

promotion of proliferation.
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Furthermore, the expression level of Bmi-1 has been
shown to be negatively correlated with the therapy of
NSCLC patients. Disease-free survival for stage I and II
patients who had received adjuvant therapy was better in
the case of Bmi-1 negative patients when compared with
their Bmi-1 positive counterparts [27]. Moreover, Guo
et al. indicated that ablation of Bmi-1 expression in
tumors by various therapeutic approaches might help in
cancer treatment [76]. All these studies suggested that
the PcG protein Bmi-1 could also be a valid target for
cancer therapy.

Conclusions

Bmi-1, a member of the PcG family, has been reported
to be associated with the initiation and progression of
various types of tumor-initiating cells, which might orig-
inate from cancer stem cells. Further, numerous studies
have demonstrated that Bmi-1 plays vital roles on the
self-renewal and differentiation of stem cells through
multiple pathways in vitro and vivo. Hence, it is of great
clinical value to further understand the molecular mech-
anism underlying the regulation of Bmi-1 on stem cells,
which not only provide a better understanding of the
roles of Bmi-1 in the growth and differentiation of stem
cells, particularly cancer stem cells, but also provide
insights for the establishment of new strategies and
effective clinical therapies for the treatment of tumors.
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