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Motility and chemotaxis systems are critical for the viru-
lence of leptospires. There were multiple copies of putative
chemotaxis homologs located at leptospires large chromo-
some. CheB1 and CheB3 from Leptospira interrogans
strain Lai are predicted to have a global CheB-like
domain, but CheB2 is predicted to have a C-terminal effec-
tor domain only. In order to verify the function of three
putative cheB genes, they were cloned into pQE31 vector
and then expressed, respectively, in wild-type Escherichia
coli strain RP437 and cheB defective strain RP4972. The
results of swarming assays and the predicted ternary
structures of CheB1 and CheB3 of L. interrogans strain
Lai suggested that the absence of an N-terminal regulatory
domain may be one of the reasons for the failure of CheB2
to complement an E. coli cheB mutant. Furthermore,
CheB?2 links solely to CheR1 and CheR3 in the interaction
network of leptospires. Taken together, these results indi-
cated that CheB2 may not function alone, and under
certain physiological conditions, it may require CheB3 and
CheR1 to function. The existence of multiple copies of che-
motaxis gene homologs suggested that L. interrogans strain
Lai might have a more complex chemosensory pathway.
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Introduction

Leptospirosis is a widely spread zoonosis of global concern
and is caused by infection with pathogenic Leptospira species
[1,2]. Infection causes flu-like episodes with severe renal and
hepatic damage, such as hemorrhaging and jaundice. In more
severe cases, massive pulmonary hemorrhages and even fatal
sudden hemoptysis can occur. The disease is caused by
corkscrew-shape bacteria of the genus leptospira [2].
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In order to survive in the environment, bacteria need to
be able to detect and move toward favorable conditions
and away from unfavorable conditions. Chemotaxis and
motility, which enable bacteria to sense and respond to
numerous changes in their environment, are critical for the
virulence of pathogenic leptospires [3,4]. Furthermore, che-
motaxis enables bacteria to penetrate host tissue barriers
during infection [5]. Chemotaxis relies on controlling the
frequency of direction switching of flagellar rotation,
which results in a net movement toward an attractant or
away from a repellent [3,4]. Chemotaxis has been studied
in great detail with the model organism Escherichia coli
[6,7]. The chemotaxis system integrates environmental cues
into a behavioral response using a dedicated signal trans-
duction pathway. This pathway is composed of chemotaxis
transducers, the histidine kinase CheA coupled to the che-
motaxis transducers via docking protein CheW, the
response regulator CheY, and the adaptation proteins CheB
and CheR [8]. Homologous chemotaxis systems have been
identified for distantly related bacteria and archaea [9,10].

Most or all of the common elements in the signaling
process were involved in the generation and regulation of
changes in the direction of flagellar rotation. CheB consists
of an N-terminal regulatory domain and a C-terminal effector
domain joined by a linker region. The methylesterase CheB
is a member of a large and functionally diverse family of
proteins known as response regulators. In the enteric bacteria
E. coli and Salmonella typhimurium, CheB functions
together with the methyltransferase CheR to control the level
of receptor methylation [11]. The main function of the cheB
product appears to be to regulate, through its methylesterase
activity, the MCP methylation state of the cell [12]. And
many studies indicated that CheB function is essential for
sensory adaptation in several kinds of bacteria [12—15].

Analysis of the complete genomic sequence of
Leptospira interrogans strain Lai suggested the presence of
multiple copies of chemotaxis homologs located in its

9T0Z ‘9z ANl uo 158nb Aq /60'sjeulno[pioxosqae//:dny wolj papeojumoq


http://abbs.oxfordjournals.org/

Cloning and characterization of three cheB genes

chromosome (12 x MCP, 2 x cheA, 3 x cheW, 5 x cheY,
3 X cheB, 2 X cheR, 2 x cheD, 1 x cheX, but no cheZ)
[16]. This implies that L. interrogans strain Lai employs
and regulates a complex chemosensory pathway.

Leptospira interrogans serovar Lai strains 017 and KH-1
move toward hemoglobin, movement that was related to
their virulence [17]. The genetic approach to further study-
ing the role of chemotaxis in L. interrogans virulence is hin-
dered by the lack of adequate genetic systems and by their
fastidious cultivation requirements. Bacterial chemotaxis
has been studied extensively in E. coli, and this is arguably
the best understood of all biological behaviors [6]. Data
from our previous study suggested that CheW1 and CheW3
(but not CheW?2) of L. interrogans strain Lai are able to sub-
stitute for the E. coli CheW proteins in the phosphorelay
pathway and thus have an in vivo function analogous to that
of E. coli CheW [18]. Thus, we proposed that L. interrogans
and E. coli may have similar chemotaxis phosphorelay
pathway effector mechanisms, although with some differ-
ences in their control by the signal terminator [19].

In this study, we used in vivo complementation to study
the function of L. interrogans chemosensory genes.
Homology was demonstrated among the three L. interro-
gans cheB genes and E. coli cheB. The mechanism of che-
motaxis signaling in L. interrogans strain Lai was
investigated. Finally, individual L. interrogans strain Lai
cheB genes were tested for complementation of a
cheB-deficient E. coli strain. In conclusion, we found that
using E. coli as a surrogate host is an effective way to study
the function of the L. interrogans chemosensory system.

Materials and Methods

Bacterial strains and plasmids

The bacterial strains and plasmids used in this study are
shown in Table 1. L. interrogans strain Lai was cultured
aerobically in liquid Ellinghausen—McCullough—Johnson—
Harris medium [2] at 28°C. Escherichia coli strains were
cultured aerobically in LB broth at 30°C. For solidification,
bacto agar was added at 1.5%. Appropriate antibiotics were

added when necessary (50 pg/ml streptomycin, 100 pwg/ml
ampicillin, and 25 pg/ml kanamycin).

Bioinformatics techniques

The amino acid sequences of all open reading frames
(ORFs) in L. interrogans strain Lai were obtained from
http:/www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=
ShowDetailView& TermToSearch=258. Multiple-sequence
alignments were accomplished using Bioedit software.
Domain prediction was done using Pfam software (http
:/pfam.sanger.ac.uk/). Predicted ternary structures were
generated online (http:/robetta.bakerlab.org/).

Construction of the recombinant plasmids

L. interrogans strain Lai was collected at a density of ~
10® bacteria/ml. DNA fragments containing the ORFs of
cheB1, cheB2, and cheB3 from L. interrogans strain Lai
genomic DNA and cheB from E. coli strain K12 were
amplified by PCR using oligonucleotides (Table 2).
Construction of the recombinant plasmids was performed
as described previously [19]. In this fashion, plasmids
pQE31-cheBI(L), pQE31-cheB2(L), pQE31-cheB3(L), and
pPQE31-cheB(E) were constructed. Plasmids pRR48-cheBs,
which express untagged CheB proteins, were constructed
with the same cloning sites.

Expression of L. interrogans strain Lai cheB genes

The expression of recombinant plasmids was under the
control of the tac promoter. This allows IPTG-induced
expression of the desired protein with an N-terminal tag
containing six histidine residues. Plasmids with inserts of
the correct sequence were introduced into wild-type E. coli
strain RP437 and the cheB defective strain RP4972 con-
taining the compatible plasmid pREP4. Plasmid pREP4
has lacI? for negatively regulating expression from the tac
promoter, thereby reducing °‘leaky’ expression. To test
CheB1(L), CheB2(L), CheB3(L), and CheB(E) overpro-
duction, 100 pl of overnight culture of RP437 (pREP4)
containing the appropriate expression plasmid was added

Table 1 Bacterial strains and plasmids used in this study

Bacteria strains and plasmids Description Source
L. interrogans serovar strain Lai L. interrogans cterohaemorrhagiae serovar lai strain Lai Our lab
E. coli strain
DH5a - Our lab
RP437 Wild type for chemotaxis, with pREP4 Dr J.S. Parkinson
RP4972 AcheB, with pREP4 Dr J.S. Parkinson
Plasmid
pQE31 - Qiagen, Hilden, Germany
pRR48 - Dr J.S. Parkinson
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Table 2 Primers employed for DNA amplification and molecular weight of expressed recombinant proteins

Gene Primer sequence (5" — 3') MW (kDa)

cheBI(L) CGGGGTACCGATGATTCCAAATCCG (F) 38.7
CCCAAGCTTTTAAATTCCTCTCTCT (R)

cheB2(L) CGCGGATCCTATGAACTACGAAGCAAT (F) 21.3
CCCAAGCTTTCATCTTTGCTCCAGGT (R)

cheB3(L) CGCGGATCCCATGATTCAAGTTTTTAT (F) 38.0
CCCAAGCTTCTAAAAATACTGAACCTC (R)

cheB(E) CGCGGATCCGATGAGCAAAATCAGGGTGT (F) 38.5

AACTGCAGTTAAATACGTATCGCCTGTCC (R)

MW, molecular weight.

into 5 ml of fresh LB. After 2 h at 30°C, IPTG was added
to one tube (the induced sample) at a final concentration of
1 mM. The cultures were shaken at 30°C for 3 h. In order
to confirm the correct expression of the fused proteins in
RP4972, western blotting analysis was utilized as described
previously [19]. In order to exclude the possibility that the
histidine tag might interfere with CheB function, we also
cloned cheB genes into pRR48 for expression of the
cloned native proteins.

Escherichia coli motility assays

Swarming assays. Escherichia coli swarming assays were
carried out using a modification of Wolfe’s method [20].
Strains carrying the expression plasmids that tested positive
for the production of induced proteins grew overnight in
LB broth with streptomycin, ampicillin, and kanamycin at
30°C. A 5-pl of aliquot of the appropriate culture (10°—
107 cells) was inoculated onto the surface of an LB swarm
plate containing streptomycin, ampicillin, kanamycin,
0.25% agar, and IPTG at 0, 1, 10, 100, or 200 .M near its
center. The plates were incubated at 30°C in a humid
environment. RP437 swarm sizes were measured after 8 h,
and mutant strain swarm sizes were measured after 48 h.
Three independent experiments were done and the corre-
sponding swarm radii were averaged and plotted.

Swimming behavior assays. The free-swimming behavior
of E. coli strains carrying expression plasmids was exam-
ined with a phase-contrast microscope. Cells grew over-
night in tryptone broth (TB; 10 g/L tryptone, 5 g/L NaCl)
with appropriate antibiotics. The stationary culture was
diluted 1:100 in fresh TB with antibiotics and 10 uM
IPTG, and incubated at 30°C for another hour before
inverted phase-contrast microscopic examination. The
observation starts when the cell appears in the view and
finishes when the cell disappears from view. About 100
cells were detected at random. Each cell was observed for
10—15 s and its behavior was recorded. Three independent
groups of cells were observed and the data averaged.
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Escherichia coli growth assays. LB broth (15 ml) containing
streptomycin, kanamycin, and ampicillin was inoculated with
150 wl of stationary phase overnight culture of RP437 (pREP4)
containing an overexpression plasmid. Immediately after
inoculation, 1 ml of the culture was withdrawn, and an ODg,
reading was taken (time 0) in 1 cm cuvettes on a Pharmacia
LKB Ultrospec II spectrophotometer zeroed with LB broth
containing streptomycin, kanamycin, and ampicillin. The
cultures were incubated at 30°C for 1 h, and IPTG was added to
a final concentration of 0.1 mM. Then, 1 ml of samples was
taken at 2, 3, 4, 6, and 8 h for quantification at ODgqq [21].

Results

Multiple-sequence alignment of the amino acid
sequences of three CheB-homolog from L. interrogans
strain Lai and CheB of E. coli K12

A multiple-sequence alignment of three CheB homologs,
from L. interrogans strain Lai, CheB of E. coli K12, and
CheB of S. fyphimurium, was accomplished using Bioedit
software. The identity and similarity of CheBl1(L),
CheB2(L), and CheB3(L) with E. coli and S. typhimurium
CheB were significant (39%, 29%, 47% and 58%, 46%,
67%, respectively; Fig. 1). The similarity of L. interrogans
strain Lai CheB proteins to CheB of E. coli was determined
using the plotSimilarity program of the GCG package. The
window size was 10. Regions of high sequence similarity
have higher scores than those with low similarity on an arbi-
trary scale. The dotted line is the average similarity score for
the whole protein (Fig. 2). As shown in Fig. 2, we can see
that in the region of residues 0—160, L. interrogans strain
Lai CheB2 has much poorer homology to E. coli CheB than
CheB1 or CheB3. All three CheBs have high homology to
E. coli CheB in the region of 160—340.

Predicted ternary structure of CheB1 and CheB3

of L. interrogans strain Lai

The predicted ternary structure of CheBl and CheB3 of
L. interrogans indicated that the three conserved aspartate
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Figure 1 Multiple-sequence alignment of three CheB homologs from L. interrogans strain Lai, CheB of E. coli K12, and S. typhimurium Identical
amino acid residues are shaded in red and conserved amino acid residues are shaded in yellow. The alignment was accomplished using Bioedit software.
Gaps introduced to maximize the similarity alignment are indicated by dashes. The bacterial abbreviations used are: CheB(E), E. coli K12 CheB,;
CheB(S), CheB of S. typhimurium; CheB(L), CheB of L. interrogans serovar strain Lai.

residues (corresponding with the residues Aspl0, 11, and
56 in E. coli and S. typhimurium) are oriented toward
and contributed to an acidic active site cluster (Fig. 3).
In addition, the conserved Ser164, His190, and Asp286
homologous residues are all located in a cleft of the
L. interrogans CheB1 and CheB3, which formed by loops
at the carboxy ends of [B-strands cf1, cB2, and cB7
(corresponding with the residues Serl64, His190, and
Asp286 in E. coli and S. typhimurium; Fig. 3).

Effects of the expression of L. interrogans cheB genes
on the swarming phenotypes of wild-type RP437 and
cheB-deficient E. coli strain RP4972

Escherichia coli wild-type strain RP437 (pREP4) and cheB
null strain RP4972 containing the pREP4 plasmid expres-
sing lacl® were transformed with plasmids expressing amino

terminal-tagged cheB1(L), cheB2(L), and cheB3(L) or with
pQE31 and cheB(E) as a control. Expression of these fused
proteins was confirmed by western blotting analysis. The
effects of expressing the three N-terminal His-tagged CheB
proteins in cheB-deficient E. coli strain RP4972 are shown
in Fig. 4. CheB1 and CheB3 restored swarming to RP4972,
giving the biggest bands at an IPTG concentration of
10 uM. For CheB2, no significant increase in swarm size
compared with that of the negative control (RP4972), con-
taining only pQE31, was seen at any IPTG concentration.
Expression of native (untagged) cheB2 also failed to restore
swarming to RP4972. The swarming of RP437 was inhib-
ited by high expression of CheBl and CheB3, but to a
lesser extent by CheB2 (Fig. 5). The inhibitory effect was
IPTG concentration-dependent. In each case, there was no
significant effect on the growth rate of RP437.
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Figure 2 Comparison of the similarity of the L. interrogans strain Lai
CheB proteins to E. coli CheB The plots were generated using the
PlotSimilarity program (Chinese Academy of Sciences, GCG package).
The window size was 10. Regions of high sequence similarity have higher
scores than those with low similarity on an arbitrary scale. The dashed
line is the average similarity score for the whole protein. In the region of
amino acids 0—160, L. interrogans strain Lai CheB2 has much poorer
homology to E. coli CheB than CheB1 or CheB3. It was also found that
all three CheBs have high homology to E. coli CheB at region of amino
acids 160—340.

Effects of the expression of L. interrogans cheB genes
on the tumbling frequency of wild-type RP437 and
cheB-deficient E. coli strain RP4972

Phase-contrast microscopy was used to test the effects of
expressing L. interrogans strain Lai cheB genes on the

A

PQE31 | CheBi(L) | CheB2(L) | CheB3(L) | CheB(E) |

Swarm size (cm)
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Figure 4 Effects of expressing the L. interrogans strain Lai cheB
genes in E. coli RP4972 The incubation time is 48 h and three
independent experiments were done. The corresponding swarm radius was
shown as the mean + SD. Examples of swarm plates containing 10 uM
IPTG are shown (*P < 0.05 and **P < 0.01).

swimming behavior of E. coli strains. The expression of
CheB1 and CheB3 in RP4972 caused a marked reduction
in tumbling frequency, whereas CheB2 expression resulted
in only a slight reduction in tumbling. The wild-type strain
(RP437) had a random distribution of runs and tumbles.
However, expression of cheBl and cheB3 at levels that

CheB3

Figure 3 Predicted tertiary structure of (A) CheBl and (B) CheB3 of L. interrogans strain Lai The blue sticks indicate the conserved aspartate
cluster (corresponding to residues Aspl0, Aspll, and Asp56 in E. coli and S. typhimurium) among CheB homologs. The red sticks indicate the active
site residues located in a cleft formed by loops at the carboxyl ends of B-strands (corresponding to residues Ser164, His190, and Asp286 in E. coli and
S. typhimurium) among CheB homologs. The structures were generated online (http:/robetta.bakerlab.org/).
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Figure 5 Effect of expression of the L. inferrogans strain Lai cheB
genes in E. coli RP437 The incubation time is 8 h and three independent
experiments were done. The corresponding swarm radius was shown as
the mean + SD (*P < 0.05 and **P < 0.01).

inhibited the swarm size of wild-type E. coli RP437
resulted in a high smooth-swimming behavior, and cheB?2
had the least effect on the behavior of RP437 (Fig. 5).

Discussion

In our previous study, we predicted protein—protein inter-
actions of L. interrogans strain Lai chemotaxis proteins by
four computational methods that calculate the functional
linkages. This prediction of the interaction network of
L. interrogans strain Lai chemotaxis and motility associ-
ated proteins demonstrated that the 11 MCPs are likely to
link to each other and that CheB2 links solely to CheR1
and CheB3, suggesting that CheB2 may not function alone
but under certain physiological conditions may require
CheB3 and CheR1 for function [18].

Multiple amino acid sequence alignment of the three
CheB homologs from L. interrogans strain Lai [CheB1(L),
CheB2(L), and CheB3(L)] shows >29% identity and
>46% similarity with E. coli K12 CheB. CheBI(L) and
CheB3(L) from L. interrogans strain Lai are predicted to
have a global CheB-like domain, but CheB2(L) is pre-
dicted to have a C-terminal effector domain only. A simi-
larity plot comparing the amino acid sequences of L.
interrogans strain Lai CheBs with E. coli CheB (Fig. 2)
shows that in the region of residues 0—160, CheB2 has
much poorer homology to E. coli CheB than either
L. interrogans CheB1 or CheB3.

To further investigate the function of these genes, we
expressed them in the cheB mutant strain RP4972 and in the
corresponding wild-type E. coli strain RP437. Our results
indicate that cheBl and cheB3 can complement the defec-
tive swarming phenotype of the cheB mutant E. coli
RP4972, whereas cheB2 cannot (Fig. 4). Overexpression of
cheBl and cheB3 in wild-type E. coli RP437 greatly

inhibited its swarming. However, this inhibitory effect was
considerably less when cheB2 was overexpressed (Fig. 5).
Thus, we conclude that L. interrogans strain Lai CheB1 and
CheB3 can play roles in the phosphorelay pathway of
E. coli. However, the lack of a swarm ring indicated that
L. interrogans strain Lai CheB1 and CheB3 did not comple-
tely restore chemotaxis to the E. coli strains. The methyles-
terase CheB is a member of a large and functionally diverse
family of proteins known as response regulators [11]. The
high-energy phosphoryl group of phospho-CheA can be
transferred to two proteins: the response regulator Che,
which when phosphorylated interacts with the flagellar
motor causing clockwise flagellar rotation, and the methy-
lesterase CheB, which when phosphorylated is activated to
demethylate the receptors, thereby attenuating the response
[22,23]. This phosphorylation network is very complex and
defects in any aspect of the signal transduction network will
lead to a change in the bacterial phenotype.

CheB has a two-domain architecture, with an N-terminal
regulatory domain homologous to CheY and a C-terminal
effector domain with amidase/esterase activity [24].
Phosphorylation of the N-terminal domain of the intact
protein also results in enhanced methylesterase activity
[25,26] that is significantly higher than that of the isolated
C-terminal domain [27]. Thus, Djordjevic and Stock [24]
considered that the N-terminal domain plays dual regulat-
ory roles, functioning to inhibit methylesterase activity
when unphosphorylated and to stimulate activity when
phosphorylated. In unphosphorylated CheB, the N-terminal
domain packs against the active site of the C-terminal
domain and thus inhibits methylesterase activity by directly
restricting access to the active site [11]. Therefore, we con-
clude that the absence of the N-terminal regulatory domain
may be one of the reasons for the failure of L. interrogans
CheB2 to complement the E. coli cheB mutant.

CheB belongs to the class of serine hydrolases that con-
tains active site catalytic triads consisting of serine, histi-
dine, and aspartate residues. In the catalytic domain of
CheB, the active site residues, Serl164, His190, and
Asp286, are located in a cleft formed by loops at the car-
boxyl ends of B-strands, cf1, cB2, and c¢B7 (B-strands
within the C-terminal domain) [11]. In CheB, phosphoryl
transfer from the histidine kinase CheA occurs at Asp-56,
which is located atop strand B3 in the N-terminal domain.
The phosphoryl transfer reaction is magnesium dependent
and in the structure of Mg2+-CheY, the active site residues,
Aspl2, Aspl3, and Asp57, coordinate the essential metal
cation [28]. Multiple-sequence alignment of the amino acid
sequences of CheBl and CheB3 from L. interrogans and
S. typhimurium showed that most of the conserved sites in
S. typhimurium CheB protein that determine its chemotaxis
signaling were found in CheB1 and CheB3 of L. interro-
gans (Fig. 1). The predicted tertiary structure of CheB1
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and CheB3 of L. interrogans indicated that the three con-
served aspartate residues and conserved Serl64, His190,
and Asp286 homologous residues probably have the
similar function as that in E. coli CheB protein (Fig. 3).
Taken together, these data suggest that CheBl and
CheB3 of L. interrogans strain Lai are able to substitute
for the E. coli CheB proteins in chemoreceptor methylation
and thus have an in vivo function analogous to E. coli
CheB function. Again, the lack of swarm ring indicated
that L. interrogans strain Lai CheB1 and CheB3 could not
restore chemotaxis completely to the E. coli strains. The
existence of multiple copies of the chemotaxis proteins
suggested that the L. interrogans strain Lai might have a
complex chemosensory pathway. Our studies demonstrating
by complementation that L. interrogans CheB1 and CheB3
act differently from CheB2 define one aspect of that com-
plexity. Although the precise reason for the difference in
the complementation of CheB2 remains unknown, the
absence of the N-terminal regulatory domain maybe one of
the reasons for the failure of CheB2 to complement an F.
coli cheB mutant. In addition, based on our previous study
that predicted protein—protein interactions of L. interrogans
strain Lai chemotaxis proteins, we propose that CheB2
may not function alone, but under certain physiological
conditions, it may require CheB3 and CheR1 for function
[18]. It is important to note that multiple chemotaxis
operons and gene homologs have been found in many bac-
terial genomes, including Borrelia burgdorferi [29],
Treponema pallidum [30], Sinorhizobium meliloti [31], and
Rhodobacter sphaeroides [21]. Our study demonstrates the
feasibility of combining in vivo and in silico approaches to
study the function of multiple-copy chemotaxis proteins.
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