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Abstract

Background: spasticity following stroke is common, but clinical measurement is difficult and inaccurate. The most common
measure is the modified Ashworth scale (MAS) which grades resistance to passive movement (RPM), but its validity is unclear.
Aim: to assess the validity of the MAS.
Methods: spasticity was clinically graded using MAS and RPM measured biomechanically in the impaired arm of 111
patients following stroke. The biomechanical device measured RPM, applied force, angular displacement, mean velocity, pas-
sive range of movement (PROM) and time required.
Results: the median age was 72 years, and 66 subjects were male. The clinical grading by MAS was ‘0’ in 15, ‘1’ in 15, ‘1+’ in
14, ‘2’ in 13, ‘3’ in 43 and ‘4’ in 11. There was no difference in RPM among ‘0’, ‘1’, ‘1+’ and ‘2’ (P>0.1). However, grade‘4’
was higher than ‘3’ and below (P<0.05). The force required increased with the increasing MAS while velocity and PROM
decreased (P<0.01). We regrouped the data using the algorithm: no stiffness = ‘0’; mild = ‘1’ and ‘1+’ and ‘2’; moderate = ‘3’;
severe = ‘4’. There was no difference between ‘no stiffness’ and ‘mild ’ (P>0.10), but ‘mild’ and moderate’ as well as ‘moder-
ate’ and ‘severe’ were different (P<0.01).
Conclusion: the MAS is not a valid ordinal level measure of RPM or spasticity. Objective measurement of RPM is possible in
the clinical setting. However, additional measurements of muscle activity (electromyography) will be required to quantify spasticity.
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Introduction

Stroke is a major cause of disability in the UK [1]. The clini-
cal features and subsequent disability following stroke occur
secondary to ischaemia-induced neuronal loss. Damage to
the corticofugal fibres (pyramidal and para-pyramidal) leads
to motor deficits, which are present in >80% of stroke
patients [2, 3]. These deficits, which are collectively
described as the upper motor neurone (UMN) syndrome,
are characterised by a combination of negative phenomena
(e.g. motor weakness) and positive phenomena (e.g. spastic-
ity) [3, 4]. Spasticity is a common impairment, which is one
component of the UMN syndrome that could be present in
more than a third of all patients at a year following stroke [5].

Spasticity is described as a velocity-dependent increase
of tonic stretch reflexes (muscle tone) with exaggerated ten-
don jerks, resulting from hyperexcitability of the stretch
reflex, as one component of the UMN syndrome [6]. Spas-
ticity has been reported to cause stiffness, a reduced range
of movement, painful spasms and contractures [7]. These
can lead to problems with posture, transfers, physical ther-
apy, nursing care and hygiene [7].

Treating and minimising the effects of spasticity has
remained one of the major aims for physicians and thera-
pists as part of rehabilitation following stroke [3, 7–10].
Current research trends would suggest that substantial
effort and resources are still being invested in developing
and studying the effectiveness of novel therapeutic technol-
ogies and strategies aimed at treating spasticity [e.g. 11–16].
Given this research focus, it is, therefore, important to be
able to measure spasticity accurately and objectively in order
to be able to plan, deliver and monitor various treatment
strategies [17]. It is now widely acknowledged that establish-
ing clearly defined goals and outcome measures are import-
ant strategies in the management of spasticity [18, 19].

Although there are many techniques available to meas-
ure spasticity [20], clinical rating scales such as the Ashworth
scale [21] and modified Ashworth scale (MAS) [22] are the
most commonly used [23]. When using clinical measures to
assess spasticity, one assesses the resistance to imposed pas-
sive movement (RPM) when the limb is briskly stretched
through the full range of available movement about a joint.
Although the MAS has been shown to have varying degrees
of inter- and intra-rater reliability for measuring RPM [24,
25], the validity of these scales has only been studied curso-
rily [e.g. 26–31]. Further, existing clinical scales of spasticity
have been shown to correlate poorly with each other, and
the lack of consistency in their reliability makes it difficult
for them to be seen as anything more than subjective mea-
sures, and this limits their clinical relevance [26, 32]. There-
fore, there is a need for a valid quantitative measurement of
spasticity, which is easy to use in a clinical setting.

Aim

The aim of the study was to investigate whether a previously
developed biomechanical measure of joint stiffness could be
used in routine clinical practice as a measure of RPM and
whether this had more resolution in the measurement of
RPM at the elbow in a post-stroke population than the MAS.

Patients and methods

Study design and setting

This was a cross-sectional study with purposeful sampling
to ensure an even representation of each level of spasticity.
Stroke patients who had been admitted to the University
Hospital with spasticity were recruited. An independent
researcher selected the patients, and the clinical assessor
took all study-related measurements. At the time of meas-
urement, the clinical assessor was blinded to the instrumen-
tal (biomechanical) measures. The measurements were
carried out at the bedside on the acute stroke ward, stroke
rehabilitation unit, in the day hospital or at the patient’s
place of residence.

Inclusion and exclusion criteria

Patients with a diagnosis of ischaemic or haemorrhagic
stroke were included. Those who had traumatic brain injury
or subarachnoid haemorrhage were excluded. Receptive
and expressive dysphasia were not used as exclusion criteria;
patients were included if they were able to co-operate with
the measurement and had sufficient basic communication
to establish the pain-free range of movement in the arm.

Ethical issues

The Local Research Ethics Committee approved the study
and measurement protocol. Informed written consent was
obtained from the patient whenever possible, or written
assent was obtained from the relative or carer. Patients and
relatives were informed of the option to withdraw from the
study of their own accord at any point.

Outcome measures

Demographic details including age, gender, affected side,
stroke subtype and the time elapsed from the stroke to
measurement were taken at recruitment.

Simultaneous clinical grading of spasticity and RPM meas-
urement was carried out on the affected limb about the elbow.
The clinical grading was done using the MAS [22]. For the pur-
pose of RPM measurement, a biomechanical device consisting
of a force transducer (measured the force used to stretch
the forearm manually) and a flexible electrogoniometer
(measured the resulting displacement) was used [29, 30].
The time taken for each measurement was also measured.

The measurement protocol was as follows: the device
was attached to the affected arm. An initial slow stretch was
first done to establish the pain-free range of movement and
this was followed by the clinical test (involving a brisk
stretch) as per the measurement protocol described by
Bohannon and Smith [22]. The arm was extended from full
flexion at the elbow through the range of pain-free passive
movement for both the slow and brisk stretch. The device
was removed after the brisk stretch was completed.

RPM was measured as the slope of the force angle plot, with
data collected from the brisk stretch, within the range of pain-
free movement using a linear regression technique. Goodness
of fit was tested using the coefficient of determination (r2)—a
value of ‘1’ suggests perfect fit and a value of ‘0’ indicates no fit
[33]. If the r2 was >0.60, the slope was considered to have an
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acceptable linear fit [34]. In addition to the above parameters,
the average velocity of the fast movement was calculated as the
ratio of passive range of movement (PROM) and time.

Data analysis

SPSS (Version 10.0) was used for statistical analysis.
In the primary analysis, validity and resolution was

assessed between the MAS groups using analysis of variance
(ANOVA). This was used to test for differences in force,
PROM, time, velocity and RPM between the various MAS
groups.

Previous studies have shown that the greatest problem
with the MAS was to discriminate within the lower grades
of stiffness (29). In view of this, for further analysis, we
grouped the patients as normal (MAS 0), mild stiffness
(MAS 1, 1+ and 2), moderate stiffness (MAS 3) and severe
stiffness (MAS 4), and ANOVA was again used to com-
pare the variation in mean RPM between these recoded
groups.

Results

A total of 111 patients who had a previous stroke were tested.
The median age was 72 years [interquartile range (IQR) 64–
78]. The sample comprised 45 female and 66 male patients.
The left arm was affected in 59 and the right arm in 52
patients. The median time post-stroke was 11 months (IQR
3–36). The measurements were carried out at the bedside and
took an average of 5 min. The maximum time taken for
measurement was 10 min, and all measurements were carried
out by a single rater with the patient in a chair or bed.

The frequency distribution of the MAS is described in
Table 1. It was not possible to demonstrate any difference
in RPM among ‘0’, ‘1’, ‘1+’ and ‘2’ (P>0.1). MAS grade‘4’
was significantly different from individual MAS values of 3
and below (P<0.05).

The force required increased with the increasing MAS,
and this was associated with a progressive decrease in veloc-
ity (P<0.01) (Table 2). The PROM decreased with increas-
ing MAS (P<0.01). There were no significant differences in
the time taken for passive movement of the arm across all
grades of the MAS (P>0.1).

Further analysis based on the newly created groups
shown in Table 3 showed no significant difference between
‘no stiffness’ and ‘mild stiffness’ (P>0.10). However, there
were significant differences between ‘mild’ and moderate’ as
well as between ‘moderate’ and ‘severe’ (P< 0.01).

Discussion

In this study, RPM was objectively measured according to
current protocols of clinical measurement, using a previ-
ously developed biomechanical device [30]. We were able
to carry out bedside measurements using the device in a
short period of time in various clinical settings on the
acute stroke unit, stroke rehabilitation ward, stroke
review clinic and patients’ place of residence (own home
or institution). The measurement technique was quick,
easy to administer and non-invasive. No adverse events
were recorded throughout the study. The technique
proved as easy to use in bed-bound patients, requiring
high levels of nursing care, who had high grade stiffness
of their arm, as in fully mobile patients with lower grades
of stiffness. Because of this, we were able to include
patients across the whole range of stiffness according to
the MAS grading.

The protocol provided us with accurate measurements
of the modalities of force, PROM, velocity and time using
first principles. Subsequently, it was possible to quantify
RPM objectively from the force angle plot using a linear
regression technique. This provided us with a variety of bio-
mechanically measurable components of a passive stretch at
the elbow according to the definition of spasticity [6].

There was little difference in RPM at the lower grades of
the MAS. This may have resulted from the inability of the
MAS to discriminate among the lower grades of spasticity,
and this observation is consistent with findings in other
studies [29, 31, 32]. Although it was possible to identify
accurately participants with higher grades of stiffness/RPM
as per guidance in the MAS, it was not possible to confirm if
the increase in stiffness exclusively represented changes in
spasticity as defined by Lance [6]. Current evidence would
suggest that the increase in RPM could result from the

Table 1. Biomechanically measured resistance to passive
movement (RPM) for the clinically graded elbow stiffness
according to the modified Ashworth scale (MAS)

MAS Frequency Mean RPM Newtons/° (SEM)
. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 15 0.07 (0.03)
1 15 0.21 (0.05)
1+ 14 0.31 (0.03)
2 13 0.37 (0.02)
3 43 0.72 (0.03)
4 11 2.21 (0.37)

Table 2. Biomechanically measured force required to
achieve the maximum range of pain-free passive movement
(PROM) and velocity of movement of the limb, for the
clinically graded elbow stiffness according to the MAS

All values are given as mean (SEM).

MAS
Maximum force 
(Newton) PROM (°)

Velocity of 
movement (°/s)

. . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . .

0 8.9 (0.8) 79 (5) 65 (6)
1 16.7 (1.1) 82 (5) 55 (4)
1+ 21.3 (1.8) 72 (4) 41 (4)
2 27.9 (1.5) 74 (5) 50 (7)
3 36.9 (1.5) 55 (2) 33 (2)
4 37.9 (3.1) 23 (2) 22 (4)

Table 3. A four-point grouping of patients based on bio-
mechanically measured RPM

Stiffness Frequency RPM Newton/° (SEM)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

None 15 0.07 (0.01)
Mild 41 0.29 (0.03)
Moderate 45 0.71 (0.03)
Severe 10 2.21 (0.37)
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biomechanical changes in the soft tissue and joints [27–30]
or ‘spastic dystonia’, a phenomenon described by Sheean [3]
as a state of continuous muscle activity which is not move-
ment related, both of which can occur in people who have
had strokes. The above two phenomena, if present, could
be the main reasons for the reduction in the passive range
of movement and the velocity of movement seen in MAS
grades of ‘3 (4)’ and ‘4 (5)’ even though the time taken to
complete the movement remained constant.

The secondary analysis showed that it may be more
appropriate to use a four-point scale to measure RPM and
that this may provide an alternative to the current clinical
measures. The decreased sensitivity (obtained by merging
the lower grades of the MAS) in clinical grading of RPM
may have led to improved validity and could contribute to
increased reliability. However, even after reducing the sensi-
tivity, it was extremely difficult to establish clinically the dif-
ference between a normal tone and mild degree of limb
stiffness. This would suggest that, for routine clinical prac-
tice, even the suggested four-point scale may lack sensitivity
at the lower end of the scale.

In clinical practice and research trials [e.g. 13, 15, 16],
antispasticity treatment is normally aimed at people who
have moderate to severe levels of RPM as graded by the
MAS. Therefore, there may be some advantage to using a
three-point clinical scale (none/mild, moderate and severe)
to measure stiffness. However, even such a scale will be
inferior to objective measures of RPM, such as those
described in this study. For example, the increased sensitiv-
ity of the biomechanical measure demonstrated that in
people with an MAS grade of ‘4’ described as having a ‘rigid
and fixed limb’, angular displacement of ∼20° was obtained.

It is clear from Lance’s definition [6] that if one were to
measure spasticity one needs to measure RPM. The implicit
assumption is that the changes in RPM reflect changes in
reflex-mediated neuronal activity. However, in clinical prac-
tice, the changes in RPM are often confounded by changes
in biomechanical properties and neuronal activity, which is
not exclusive to reflex hyperexcitability. Using first princi-
ples, we were able to use two primary measures, namely
force and angular displacement, to quantify RPM objec-
tively and accurately. This provides a valid measurement of
RPM, which is an indicator of the stiffness of the limb and
could represent spasticity. However, as muscle electrical
activity was not measured (using electromyography), it was
not possible to confirm whether the stiffness was purely
biomechanical, purely neural or a combination of both.

MAS lacks the ability to discriminate small changes in
RPM. This could be due to the fact that when using the
MAS to quantify spasticity, one may be quantifying, in addi-
tion to RPM, other parameters (such as force applied, range
of movement, time taken to move, momentum and catch),
which then have the potential to confound the clinical grad-
ing [30].

It would be tempting to suggest the use of a three-point
scale for the grading of arm stiffness in a clinical setting.
However, the evidence from this study and others [e.g. 26–
30] would suggest that any such scale would provide limited
diagnostic information, i.e. the clinical scale would not be

able to identify whether the stiffness is ‘purely biomechani-
cal’, ‘purely neural’ or a combination of both. It is possible
to measure stiffness objectively at the bedside, and this may
provide valuable information in identifying patients for
intervention and in measuring the effects of treatment.
However, if one is interested in neural components of stiff-
ness/RPM, then there is a need additionally to measure lev-
els of muscle activity. Further work will be required to
explore the feasibility of such a measurement system.

Key points
• The six-point clinical scale (MAS) is not a valid ordinal

level measure of RPM or spasticity.
• Objective measurement of RPM is possible at the bedside.
• RPM is influenced by biomechanical factors, neural fac-

tors or a combination of both. Additional measurements
of muscle activity will be required to obtain meaningful
diagnostic information.
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