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Abstract        Efficient massive mapping algorithm (EMMA), an algorithm on efficiently mapping massive
cDNAs onto genomic sequences, has recently been developed. The process of mapping massive cDNAs
onto genomic sequences has been improved using more approximate mapping filtering based on an enhanced
suffix array coupled with a pruned fast hash table, algorithms of block alignment extensions, and k-longest
paths. When compared with the classical BLAT software in this field, the computing of EMMA ranges from
two to forty-one times faster under similar prediction precisions.
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Mapping cDNAs (e.g., mRNAs and ESTs) onto genomic
sequences has become a common and potentially powerful
technique in the field of genome research. The resulting
alignments are often used in fields of gene finding,
alternative splicing prediction and single nucleotide
polymorphism studies [1−5]. However with more and more
sequences accumulated, the mapping computation has
become more and more expensive for most researches.
Faster cDNA-genome mapping software is always highly
expected, some of which are SIM4 [6], SPIDEY [7],
GENESEQER [8,9], BLAT [10], SQUALL [11], GMAP
[12] and ESTMAPPER [13]. Most of these algorithms are
derived from BLAST [14] and featured as a common four-
phase framework: first, finding exact matches longer than
given size; second, extending each exact match pair to
both directions by an ungapped alignment until the score
drops significantly; third, linking the extended matches

together to outline the plausible splice patterns; and finally,
refining the outlined splicing patterns to produce precise
mapping alignments.

Despite their various implementation methodologies, the
first step in most existing algorithms is implemented by
computing the word pairs (exact matches of fixed length)
of the cDNA and the genome. To improve the computation
speed, the genome is pre-processed by indexing all of its
words in a table. Early algorithms like SIM4 and SPIDEY
use simple look-up-table (LUT) functions to store these
genome words, which require O(4w) memory, where w is
the word size. For large w values, the memory required
for LUT would become impractical for normal computers.
To address this problem, modern cDNA mapping
algorithms including BLAT and GMAP mostly use hash
tables and only consider non-overlapped words, which
not only reduces the size of word table but also improves
the computation speed by thousands of times without
significant loss of precision [10,12].

The idea of the word-based method is simple enough
but requires additional treatment to concatenate neighboring
word pairs into longer ones. It has been evaluated that
such concatenation processes take up to 18% of the entire
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executing time [15]. Recently, Wu et al. proposed a better
solution based on maximal exact matches (MEMs),
requiring only one sixth of the computation time of BLAT
under a similar precision [13]. An MEM is an exact match
that can not be extended on either side without creating a
mismatch. It is in nature the concatenated neighboring
words. For this reason, MEMs are non-overlapping along
diagonals of alignment matrices. MEMs of the cDNA and
the genome can be efficiently computed by converting a
genome into a suffix tree, and comparing it with the cDNA
sequence. However, the suffix tree often encounters the
problem of intrinsic large memory space [16]. To solve
this problem, Abouelhoda et al. proposed a space-
economical data structure called enhanced suffix arrays
(ESAs) which can be used to efficiently solve all of the
problems that are usually solved by a bottom-up or a top-
down traversal of the suffix tree [17].

After the exact matches are computed, existing align-
ment algorithms generally make the traditional BLAST-like
ungapped extension (also called gap-free extension) to
determine if an exact match is likely to form part of a
high-score alignment segment [14]. Since no gap is con-
sidered in computation, the resulting extended matches
may not approximate the local alignments well. Recently,
Cameron et al. proposed a semi-gapped extension
algorithm, which makes better extended matches with gap
insertions allowed at limited locations [15].

The majority of cDNA mapping algorithms are optimized
for the genome-scale alignment. Some studies, however,
require efficiently mapping massive cDNAs onto a relative
short genomic sequence. For example, in order to predict
alternative splicing isoforms of a gene, millions of cDNAs
have to be tried to map onto the corresponding genomic
sequence. In our previous work, a pipeline named ASA
(alternative splicing assembler) was developed to resolve
this problem based on BLAST [18]. Nevertheless, this
method still spends more time searching redundant
databases like dbEST due to the unnecessary computation
of many short local alignments.

As the efforts to develop faster mapping algorithms
never cease, efficient massive mapping algorithm (EMMA)
has been set up. EMMA is a more efficient algorithm using
an approximate mapping filtering method based on many
new techniques including ESAs, pruned fast hash tables,
block extensions and the k-longest-path algorithm. The
performance of EMMA is evaluated by comparing it with
BLAT using the same dataset. Comparison results show
that it is about 2 to 41 times as fast as BLAT when reaching
similar prediction precision. Further performance
comparison using a different dataset shows that EMMA

reaches precisions comparable with other programs, and
is at least four times as fast as them.

Materials and Methods

Approximate mapping filtering

Approximate mapping filtering is a highly efficient
method of searching cDNAs that could be mapped onto
the genomic sequence. False local alignments impossible
to be part of any plausible alignment are filtered before
precise and expensive dynamic programming computation.
The approximate mapping filtering consists of three steps:
compute MEM based on ESA and pruned fast hash table
(PFHT), extend MEMs using block extension, and link
extended MEM.

Compute MEM based on ESA and PFHT

EMMA uses space-economic ESA structure to compute
MEM matches. All cDNAs are first concatenated and
converted into ESA. Then each suffix of the genomic
sequence is compared to the preprocessed cDNA database.
The constructed ESA is divided into buckets where each
consists of suffixes with distinct common prefixes. These
buckets are then indexed by their respective distinct
common prefix into a PFHT [19], which uses the extended
Bloom filter [20] and universal hash function [21] to
improve the lookup performance. The preprocess only
needs to be carried out once per database, since the ESA
is a flat array and can be easily stored and reloaded for
future computation.

Let G(i) be the ith suffix of a genomic sequence G. The
right maximal exact matches (only have mismatches at
the right end) are then computed by first comparing G
(i) to the PFHT to get the corresponding bucket, and then
traversing along G(i) down the part of the ESA in the
bucket. The resulting right maximal exact matches are
removed if they have matches at the (i−1) th base.
Therefore each remaining maximal exact matche is bounded
with mismatches at both ends. By carrying out this
computation for each possible G(i) , all MEMs of the
cDNAs and the genomic sequence will be revealed.

Like word-based algorithms, using shorter MEMs will
produce more precise results, and using longer ones will
greatly reduce the computation time. To balance the
precision and efficiency of the alignment computation, the
minimal length of initial MEMs (Tw) must be carefully
determined. The Tw value is equivalent to the word size
(W) that can be determined in the BLAST algorithm, thus
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they can be determined in the same way. If no MEMs of a
cDNA and a genome sequence are longer than the preset
threshold Tw, the cDNA can not be mapped onto the genome
sequence under that criterion.

Block extension algorithm

We propose a greedy algorithm, so-called block exten-
sion algorithm, to extend MEMs or maximal exact matches
into approximate local alignments (Fig. 1). The block
extension algorithm is performed by iteratively extending
a MEM by the optimal global alignment (BestGlobalAlign)
or the best extension alignment (BestPrefixAlign) of the
following k-base pair (called a block) until the score drops
significantly. Since gaps at different blocks are treated
independently, only a non-affine gapping scheme shall be
used in block extension.

Therefore, the block table needs 2 14 k+ additional memory
to store triplets of BestGlobalAlign and BestPrefixAlign
of all possible k-length sequence pairs. Each triplet is
computed independently with at most O(k) time and O(k)
space. Therefore, the time and space complexities of
precomputing the block table are O( 2 14 kk + ) and O(k),
respectively. According to our experiments, a k value of 5
is sufficient for most cases. In this case, the block table
needs about 4M memory. Let n be the average alignment
size. With the pre-computed block table, the block extension
can be performed in O(n/k) time, which is comparable
with the ungapped extension.

One major advantage of block extension over the
ungapped extension and semi-gapped extension is that the
block extension allows gap insertions in the sequence at
any location. Thus the extension can stride over small
insertions and deletions. This feature enables extended
MEMs computed by block extension to approximate the
alignment segments much better.

Link extended MEMs

To link extended MEMs into approximate mapping, a
graph is constructed, where each vertex except one source
vertex represents an extended MEM. Two vertices are
connected by a directed edge if they are possible to be
parts of the same mapping alignment. The direction of
each edge indicates the order of its end vertices in a
mapping alignment, and its weight is set to the score of
the vertex it points to. It is obvious that an extended MEM
graph is actually a weighted directed acyclic graph, where
each path starting from the source vertex represents a
possible approximate mapping whose score equals to the
length of the weighted path.

Instead of the longest-path algorithm used by most
cDNA mapping algorithms, we choose the k-longest-path
algorithm [23] to compute best k extended MEM chains.
The path computation can be performed in O(m+kn) time,
where m and n are the number of edges and vertices in the
graph, respectively. Among the k best chains, only those
that are not sub-paths of any other ones and have lengths
larger than a preset threshold Tc are chosen as approxi-
mate mappings of the cDNA on the genomic sequence.

Choosing multiple chains enables production of more
robust results but requires more computation time at the
same time. The robustness and the speed of the linking
process can be balanced by adjusting the value of k. In
our experience, a k value of 3 is proper for most cases.

Precise alignment

After the approximate mapping filtering process, we have

Fig. 1        Block extension algorithm

For small k values, the optimal alignment scores of all
possible pairs of length k can be pre-computed and in-
dexed by their corresponding sequence pairs into a table
(called a block table). With Zhang’s greedy algorithm where
the award for a match (mat) and penalties for a mismatch
(mis) and gap (ind) shown in Equation 1, the score of an
alignment can be computed from the edit distance and
alignment lengths by Equation 2 [22].

ind=mis–mat/2                                                                                   1

Score(d,i,j)=(i+j)×mat/2–d×(mat–mis)                                     2

This implies that each pre-computed alignment could
be represented as a triplet (d,i,j), where d, i and j are the
edit distance and the alignment lengths, respectively.

 by guest on M
ay 22, 2016

http://abbs.oxfordjournals.org/
D

ow
nloaded from

 

http://abbs.oxfordjournals.org/


860                                                                                   Acta Biochim Biophys Sin                                                              Vol. 38, No. 12

©Institute of Biochemistry and Cell Biology, SIBS, CAS

the approximate mappings of each cDNA on the genomic
sequence. To compute the precise alignments, all of these
approximate mappings are re-computed by a dynamic
programming method.

EMMA adopts GMAP’s sandwich dynamic program-
ming algorithm to compute the precise EST-genome
alignments. Exon-intron boundaries are adjusted to meet
canonical splice sites, i.e., AG/GT, AC/GT and AT/AC at
donor/acceptor sites [24,25].

Efficient massive mapping algorithm

By finding and extending maximal exact matches, our
mapping algorithm filters MEMs by the block extension
algorithm. Then the extended MEMs are linked into
approximate mappings. In the end, dynamic programming
is performed to compute the precise mapping alignments.
The overview of our algorithm is as follows:

I    Preprocess

1.1 Concatenate cDNAs from a database into a long
sequence, and convert the sequence into ESA indexed
in a PFHT.

1.2 Given a block size kb, compute the optimal global
alignments of all possible kb-base pairs and store their
scores in the block table.

II    Approximate mapping filtering

2.1 Compute MEMs longer than Tw based on the pre-
constructed ESA and PFHT.

2.2 Extend each MEM by the block extension algorithm.
The extended MEMs with scores larger than Tb are
selected for the next process.

2.3 Link the extended process by the k-longest-path
algorithm. Approximate mappings of each cDNA are
selected from the linked MEM chains.

III    Re-compute the approximate mappings by the sandwich
dynamic programming method. Exon/intron boundaries are
adjusted to meet the canonical splicing sites.

Dataset

Three hundred and ninety-seven genes (14 million bases)
with annotated RefSeq [26,27] mRNAs in the well-
annotated human chromosome 22 are selected from
GenBank [28] and serve for genes to be investigated. A
total of 34,908 ESTs (20 million bases) are selected by
searching the 397 genes against dbEST using NCBI BLAST
software (word size=11, expect=1e-10, no low complexity
filter).

Considering the sequencing errors, 30 bases of unmapped

regions are allowed at both ends of each EST. The mapping
alignments of each EST on the chromosome 22 are recorded
as references for the performance comparison.

Results

To evaluate the efficiency of EMMA, a tool has been
developed by C language on a LENOVO®R410 SMP server
with 4 Intel® Itanium® 2 processors and 32GB RAM, and
compared to BLAT using the same set of dataset prepared
in the “Methods and Materials”.

Evaluate block extension

With a 260-base sequence selected from human exons,
two simulation experiments are carried out to evaluate the
precision of block extension. In each experiment, 10
datasets are prepared of which each contains 2000 samples
generated by randomly and independently introducing
errors including mismatches, insertions and deletions into
the 260-base sequence using the same error rate. For each
pair of sample/original sequence, the approximate mapping
filtering is performed using ungapped extension and block
extension, respectively, and their precise alignment is also
computed by dynamic programming. In experiment (a),
the error rates for the 10 datasets range from 0.01 to 0.1
stepping 0.01, and Tw for both methods are set to 20. In
experiment (b), the error rate is set to 0.05 for all datasets,
and Tw ranges from 15 to 24 for the 10 datasets. The same
scoring scheme is used in each alignment computation.

The accuracy of an extension method for a dataset is
defined as the ratio of the average approximate alignment
score to the average precise alignment score over all samples
in the dataset. According to the definition, an extension
algorithm with a higher accuracy value is expected to
produce better approximate alignments. Fig. 2 shows the
error rate-accuracy curves of block extension and
ungapped extension in the two experiments.

It can be seen from Fig. 2(A) that even with an error
rate up to 0.1, the accuracy of block extension still reaches
a high value over 0.98, while the accuracy of block
extension significantly drops to 0.75. It seems that the
approximate alignments computed by the block extension
algorithm are always very close to the precise ones.

Fig. 2(B) shows the influence of minimal MEM size
(Tw) on the accuracy of both extension algorithms. As Tw

increases, the accuracy of block extension remains at a
high level close to 1, while the accuracy of the ungapped
extension drops significantly. It is not surprising that the
accuracy of the ungapped extension decreases with Tw,
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because the requirement of large exact matches makes
some parts of the alignment unreachable. However, the
block extension seems to be able to deal with these parts.

The advantage of the block extension may come from
the fact that it considers gaps in computation and does not
limit their locations. The feature enables the block exten-
sion process to stride over small gaps, which is impos-
sible for the ungapped extension. Block extension is ex-
pected to produce approximate alignments very close to
the precise ones, which means more false alignments would
be filtered, and the computation in the linking process can
be greatly reduced.

Parameterize PFHT

Let ku be the number of universal hash functions. To
parameterize PFHT, we search the 397 genes against ran-
domly selected 34,908 ESTs with different ku values. Ex-
ecuting time and corresponding ku values are recorded and
shown in Fig. 3.

It is seen that EMMA reaches its best performance when
k is set to 4 or 5. The optimal size for the PFHT is nk/ln2,
where n is the number of items to be indexed. With smaller
k values, the size of PFHT decreases, which increases the
collision chance and decreases the indexing speed. With
larger k values, PFHT may suffer from the poor memory
locality due to its large size, and the increased computa-
tion for hash functions.

Evaluate EMMA

To evaluate the performance of EMMA, the 397 genes
are searched against the 34,908 ESTs by EMMA with Tw

values ranging from 10 to 20. As a comparison, BLAT
(version 3.2) is downloaded and applied to the same dataset
using different word sizes ranging from 8 to 12. The pa-

rameter N of BLAT is set to 2 for using a two-hit scheme.
The resulting mappings computed by either method are
compared to the corresponding reference ones. The map-
ping precision is then defined to be the percentage of the
correctly mapped ESTs. Tables 1 and 2 list the execution
time and precision of results using EMMA and BLAT,
respectively. Table 3 compares the space used by EMMA
and BLAT. Fig. 4 compares the precision-time curves be-
tween EMMA and BLAT.

One may notice that the running time does not decrease
monotonically as Tw increases. According to our analysis,
the fluctuation may come from the influence of the local-
ity of PFHT memory reference. The space requirement of
PFHT increases as Tw increases. The poor locality of such
a huge memory space can significantly lower the indexing

Fig. 2       The accuracy curves of block extension algorithm and ungapped extension algorithm

Fig. 3        Executing time of the efficient massive mapping
algorithm (EMMA) when using different ku values for pruned
fast hash table (PFHT)
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Table 1        Search time and precision of efficient massive
mapping algorithm (EMMA) using various minimal maximal
exact match (MEM) size configurations

Tw Time (s) Precision

10 3907.0 93.2%
11 1212.9 93.0%
12 714.5 92.9%
13 287.5 92.7%
14 332.1 92.5%
15 177.4 92.2%
16 202.1 91.8%
17 170.7 91.5%
18 120.7 91.0%
19 110.5 90.6%
20 117.4 90.2%

Table 2 Search time and precision of BLAT using various
minimal word size W configurations

W Time (s) Precision

8 24729 93.6%
9 15509 93.2%

10 11375 92.3%
11 2683 91.4%
12 1917 90.3%

Table 3        Physical memory used by BLAT and the efficient
massive mapping algorithm (EMMA)

Group Memory (MB)

BLAT 24–212
EMMA 338–604

Fig. 5        Speed ratio of efficient massive mapping algorithm
(EMMA) and BLAT under different prediction precision

Fig. 4        Precision-time curves of efficient massive mapping
algorithm (EMMA) and BLAT

efficiency of PFHT. With certain parameter settings, the
penalty of this poor memory locality may exceed the
efficiency award brought by the increased Tw. In such
cases, the running time will increase although Tw increases.

It can be seen from Fig. 4 that the mapping precision of
EMMA is between 0.9 and 0.932, which is comparable
with BLAT. However, the executing time for BLAT rises
rapidly with the mapping precision increases, while the
time for EMMA remains within a very small value and
almost stable until the mapping precision goes beyond
0.93. At any mapping precision, BLAT needs much more
executing time than that of EMMA, especially for the
mapping precisions ranging from 0.915 to 0.93.

Fig. 5 shows the ratio of the executing speed of EMMA
to that of BLAT. The curve shows that EMMA is about 25
times faster than BLAT on average, 41 times at most, and
two times at least.

To compare the efficiency of EMMA with other cDNA
mapping algorithms or alignment algorithms, the results
of the performance comparison evaluated using
ESTMAPPER, SQUALL, BLAT, SPIDEY, SIM4 and BLAT
[13] and GMAP and BLAT [12] are used to compare with
our performance evaluation. The comparison is based on
a hypothesis that relative performances of these algorithms
do not vary greatly when using different datasets. The
comparison results are shown in Table 4. The preliminary
comparison results show that EMMA is expected to be
more efficient than existing cDNA mapping algorithms
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when reaching similar precisions.

Discussion

Benefiting from the advanced technologies including
ESA and pruned fast hash table, the computation speed of
EMMA has been greatly improved. The approximate
mapping filtering method avoids the expensive computation
on the abundant false local alignments. All of these factors
have made EMMA a competitive tool for mapping massive
cDNAs onto a genomic sequence.

The advantage of EMMA over existing cDNA mapping
algorithms is shown in two ways. On one hand, for
massive mapping performed with similar parameter setting,
EMMA generally needs much less time than other cDNA
mapping algorithms. This surely benefits most time-critical
applications that require the mapping process to be
performed in a very short time. On the other hand, for
people who expect accurate mapping results and can afford
enough computation time, EMMA can provide much better
mapping results than other cDNA mapping algorithms
within the similar running time.

EMMA improves the computational speed by loading a
preprocessed cDNA database and the block table into the
memory. This requires more space than algorithms using
a simple hash table, (e.g., BLAT). In this experiment,
EMMA takes 604MB memory at most, and BLAT takes
only 212MB. The large space requirement of EMMA limits
its usage on some commodity hardware with less power,
where GMAP could be a better choice in this case.

  In this paper, we presented EMMA, an efficient
algorithm for massive mapping of cDNAs onto gene
sequences based on approximate mapping filtering. Com-
parison results using a dataset of 397 genes and 34,908

Algorithm Relative speed Relative space Precision

Sim4 1.5e-3 4.2 99.6%
Spidey 6e-3 2.1 90.8%
BLAT 1.0 1.0 89.7%
Squall 1.4 1.0 90.1%
ESTmapper 6.0 3.4 99.9%
GMAP 6.0 1.2 99.3%
EMMA 25.0 4.7 93.6%

Table 4        Performance comparison of some cDNA mapping
algorithms

EMMA, efficient massive mapping algorithm; GMAP, genomic
mapping and alignment program.
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