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Dengue infection is a major cause of morbidity in tropical
and subtropical regions, bringing nearly 40% of the world
population at risk and causing more than 20,000 deaths per
year. But there is neither a vaccine for dengue disease nor
antiviral drugs to treat the infection. In recent years, dengue
infection has been particularly prevalent in India, Southeast
Asia, Brazil, and Guangdong Province, China. In this article,
we present a brief summary of the biological characteristics
of dengue virus and associated flaviviruses, and outline the
progress on studies of vaccines and drugs based on potential
targets of the dengue virus.
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Introduction

The family Flaviviridae is a large group of viral pathogens
responsible for causing severe disease and mortality in
humans and animals. The family consists of three genera,
Flavivirus, Pestivirus, and Hepacivirus. The flaviviruses
(Latin “flavus” meaning yellow, because of the jaundice
induced by yellow fever virus) comprise a large genus of
medically important, arthropod-transmitted, enveloped
viruses with more than 70 members that include dengue
virus, Japanese encephalitis virus (JEV), tick-borne
encephalitis virus (TBEV), West Nile virus (WNV), and
yellow fever virus (YFV). Symptoms of flavivirus infection
can range from mild fever and malaise to fatal encephalitis
and haemorrhagic fever [1,2].

Dengue virus is responsible for the highest rate of disease
and mortality among members of the Flavivirus genus.
Global epidemics of dengue virus have occurred over the

past few years. Dengue virus infects 50 to 100 million
people each year, with 500,000 patients developing the
more severe disease, namely, dengue hemorrhagic fever
(DHF), leading to hospitalizations and resulting in
approximately 20,000 deaths, mainly in children [3−5].
Dengue viruses are transmitted to humans by the bite of
infective female mosquitoes of the genus Aedes. Through-
out tropical and subtropical regions around the world, over
2.5 billion people live in areas where dengue virus and its
mosquito vectors, the Aedes aegypti and Aedes albopictus,
are endemic. The most efficient epidemic vector is A.
aegypti, although A. albopictus and A. polynesiensis are
also involved in dengue outbreaks [6]. Several factors have
been implicated in the global resurgence of dengue: failure
to control the Aedes population; increased airplane travel
to dengue endemic areas; uncontrolled urbanization;
unprecedented population growth; and global climate
warming [7,8].

Infection of dengue virus is usually characterized by
fever and severe joint pain, but more serious syndromes,
DHF or dengue shock syndrome, sometimes occur
following dengue infection. DHF was mostly confined to
Southeast Asia until the 1960s, then it also became endemic
in Central America, and more recently in South America.
There are four antigenically related but distinct serotypes
of dengue virus, designated DEN-1, DEN-2, DEN-3, and
DEN-4, and infection by any one serotype does not protect
the individual from infection by the remaining three
serotypes [9,10]. It has been postulated that hemorrhagic
fever or shock syndrome is usually the result of sequential
infection with multiple serotypes. Although vaccines have
been developed for several flaviviruses, control of dengue
virus through the use of vaccination has proven to be
elusive [3].

The dengue viruses share many characteristics with
other flaviviruses, such as a single-stranded RNA genome
that is packaged by the virus capsid protein in a host-
derived lipid bilayer, and surrounded by 180 copies of two
glycoproteins. The complete virion is approximately 50
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nm in diameter and contains an approximately 10.7 kb
positive-sensed RNA genome that has one open reading
frame encoding a single polyprotein [11]. The 5′-end of
the genomic RNA has a type 1 cap, and the 3′-end is devoid
of a poly(A) tail. The 5′-end encodes three structural
proteins: capsid (C); membrane precursor protein (prM)
proteolytically cleaved by the host protease furin to form
the membrane protein in mature virions; and envelope (E)
constituting the enveloped virus particle [11,12]. Seven
non-structural (NS) proteins essential for viral replication
are encoded by the remainder of the genome. The order
of proteins encoded is 5′-C-prM-E-NS1-NS2A-NS2B-
NS3-NS4A-NS4B-NS5-3′ [12] [Fig. 1(A)].

Structure

The dengue virus surface is composed of 180 copies of
the envelope glycoprotein and the membrane protein. The
E protein of dengue virus contains a class II fusion peptide
sequence that is important for viral invasion of a host cell.
There are remarkable structural deviations between the
immature and mature dengue envelopes as revealed by
elegant cryo-electron microscopy studies [11,13]. The
immature dengue virus particle is covered with 60
asymmetric trimers of prM-E heterodimers that stick out
like spikes from its surface [Fig. 2(A)]. The prM protein

Fig. 1 Genome of dengue virus and its polyprotein processing    (A) The dengue virus genome encodes a single large open reading frame
that is translated to form a viral polyprotein. The structural domain and nonstructural domain are colored green and light blue, respectively. The
5′-end of the genomic RNA has a type 1 cap shown in orange, and the 3′-end is devoid of a poly(A) tail. (B) Proteolytic processing sites in the
dengue virus polyprotein. The dengue virus polyprotein is cleaved by viral and host proteases to produce three structural proteins (C, capsid or
core protein; E, envelope protein; prM, precursor to membrane protein) shown in green, and seven nonstructural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, NS5) shown in light blue. The identified cleavages in the regions of the structural and nonstructural proteins that are mediated
by the host cell proteases and the virus-encoded NS2B/NS3 protease are indicated. UTR, untranslated region.

Fig. 2 Immature and mature dengue viruses [11]    (A) The immature dengue particle. It has 60 protein “spikes” (circled) that jut from its
surface, making it far less smooth than the mature form. (B) The structure of the mature dengue virus. The virus surface is unusually smooth and its
membrane is completely enclosed by a protein shell. One raft consists of three parallel dimers of the envelope protein, the different domains of
which are represented by different colors (domains I, II, and III are colored red, yellow, and blue, respectively) and the fusion peptide is shown
in green.
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protects E from premature fusion while passing through
the acidic environment of the trans-Golgi network (TGN)
during morphogenesis [13]. During maturation, the N-
terminal part of the prM protein is released by the host cell
furin that induces a rearrangement of the E proteins essential
for fusion. In the mature virus, the E proteins exist as
homodimers that lie on the viral membrane in the form of
30 so-called “rafts”. Each raft contains three parallel dimers
arranged in icosahedral symmetry and organized into a
herringbone pattern [11] [Fig. 2(B)].

Life Cycle

Virions attach to the surface of a host cell and subsequently
enter the cell by receptor-mediated endocytosis. Acidifi-
cation of the endosomal vesicle triggers an irreversible
trimerization of the E protein in the virion that results in
fusion of the viral and cell membranes [14]. After fusion
has occurred, the nucleocapsid (NC) is released into the
cytoplasm, leading to the dissociation of the C protein and
RNA. Once the genome is released into the cytoplasm, the
positive-sense RNA is translated into a single polyprotein
that is processed cotranslationally and post-translationally
by viral and host proteases. Genome replication occurs on
intracellular membranes. Assembly and formation of
immature virus particles occur on the surface of the
endoplasmic reticulum (ER) when the structural proteins
and newly synthesized RNA bud into the lumen of ER
[14−16]. Although these particles contain E and prM, lipid
membrane and NC, they cannot induce host-cell fusion,
remaining non-infectious, because the prM protein is
needed to be further processed [17,18]. Subviral particles
are also produced in ER, but only contain the glycoproteins
and membrane, and lack the C protein and genomic RNA,
making them also non-infectious [19]. The resultant non-
infectious, immature viral and subviral particles are
transported through the TGN. The immature virion particles
are then cleaved by the host protease furin, resulting in
mature, infectious particles. Subviral particles are also
cleaved by furin. The mature virions and subviral particles
are subsequently released from the host cell by exocytosis
(Fig. 3) [20].

Entry, Fusion, and Infection

The structure of soluble E protein elucidated by X-ray
crystallography consists of three domains: domain I, the
N-terminal part structurally located in the central part;
domain II, the fusion domain containing a hydrophobic
fusion peptide; domain III, the putative receptor binding

Fig. 3 Life cycle of dengue and associated flaviviruses [20]
Virions attach to the surface of a host cell and subsequently enter the
cell by receptor-mediated endocytosis. Acidification of the endosomal
vesicle triggers conformational changes in the virion, fusion of the
viral and cell membranes, and particle disassembly. Once the genome
is released into the cytoplasm, the positive-sense RNA is translated
into a single polyprotein that is processed cotranslationally and post-
translationally by viral and host proteases. Genome replication occurs
on intracellular membranes. Virus assembly occurs on the surface of
the endoplasmic reticulum (ER) when the structural proteins and newly-
synthesized RNA bud into the lumen of ER. The resultant non-infectious,
immature viral and subviral particles are transported through the trans-
Golgi network. The immature virion particles are cleaved by the host
protease furin, resulting in mature, infectious particles. Subviral particles
are also cleaved by furin. Mature virions and subviral particles are
subsequently released by exocytosis.

domain [21,22]. Cryo-electron microscopy revealed the
presence of a C-terminal “stem” and two transmembrane
sequences through which the E protein is anchored to the
viral surface [23]. During endocytosis, under the acid
condition in endosome, the E proteins undergo a dramatic
structural change from dimer into trimer. These trimers
cluster on the viral surface and induce curvature that might
promote fusion. In the E trimer, the fusion peptide is
exposed at the tip of the trimer, leading the virus and
endosomal membranes to merge [24−26].

Dengue virus is known to enter cells through receptor-
mediated endocytosis [14,27−37]. Several primary cellular
receptors and low-affinity coreceptors for flaviviruses have
been identified. Dendritic cell-specific ICAM-grabbing
non-integrin and CD-14-associated molecules have been
suggested as the primary receptors for dengue virus [28,
31,36]. Heparin and other glycosaminoglycans act as low-
affinity coreceptors for several flaviviruses [27,29,30,32−
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35,37].

Enzymatic Activities and Processing

Once dengue virus enters cells, the viral genome consisting
of a single positive-strand RNA is liberated into the
cytoplasm, and is used as a template for translation into a
large polyprotein precursor. The cotranslational and post-
translational processing of the polyprotein precursor by
the host cell proteases (e.g. signalase, furin) within the ER
and by the viral protease (NS3pro) in cytoplasm gives rise
to three structural proteins of the enveloped virus particle
(C-prM-E) and seven nonstructural proteins (NS1-NS2A-
NS2B-NS3-NS4A-NS4B-NS5), most of which are thought
to be required for assembling together with yet poorly-
defined host proteins to form a replication machine in the
cytoplasm of the infected cells that catalyze copying of
the viral RNA [38] [Fig. 1(B)]. The newly-generated RNAs
are then used for translation to produce more viral proteins
and for copying more viral RNAs of virus particles.

During translation of the polyprotein, the structural
proteins are translocated and anchored in ER by various
signal sequences and membrane anchor domains (Fig. 4).
And the C-terminal region of the C protein, serving as a
hydrophobic signal sequence, anchors the C protein into
the ER membrane, and thus translocates prM into the lumen
of ER. Subsequently, this signal sequence is cleaved off
by the host cell signalase, liberating the N-terminus of prM,
whereas the C protein remains closely associated with the
ER membrane [39]. This association is present in all
flaviviruses, and promotes viral assembly [40]. The prM
protein has two transmembrane-spanning domains, a stop
transfer sequence and a signal sequence (Fig. 4), and the
sequentially linked E protein is then also translocated into
the lumen of ER. After the appropriate proteolytic
cleavages, the C protein remains associated with the ER
membrane, whereas the viral RNA is released into the
cytoplasm after replication. On the lumenal side of ER,
the prM and E proteins form a stable heterodimer within a
few minutes of translation [41−43].

NS3 is a multifunctional protein. Based on sequence
comparison with known proteases, a classic trypsin-like
serine protease with a catalytic triad (His51, Asp75, and
Ser135) was identified in the N-terminal 180 amino acid
residues of NS3 [38,44−48]. The enzyme requires NS2B
as a cofactor for activation of protease activity [46,49].
The minimum sequence for protease activity was mapped
to the first 167 residues of NS3 [50]. The C-terminal part
of NS3 carries three other enzymatic activities: an RNA-
stimulated nucleoside triphosphatase (NTPase); an RNA

Fig. 4 Membrane topology of dengue and associated flavivirus
structural proteins [20]    The predicted orientation of the structural
proteins across the endoplasmic reticulum (ER) membrane is shown.
Transmembrane helices are indicated by cylinders, arrows indicating
the sites of post-translational cleavage by specific enzymes are
indicated by different colors. E, envelope; NS1, nonstructural protein
1; prM, precursor to membrane protein.

helicase; and an RNA 5′-triphosphatase (RTPase) [45,47,
50−55] [Fig. 5(A)]. The latter is most likely required for
removal of the terminal phosphate group from the newly-
synthesized RNA, and for formation of the viral cap
structure at the 5′-end of the virus RNA genome [51,54,
55]. The helicase functions to unwind the double-stranded
nucleic acids during viral RNA replication [45,50]. This
activity is energy-dependent and is carried out by its
NTPase activity that hydrolyses ATP to generate the
necessary energy [50,52,53]. The minimal domain for
helicase and NTPase activities was reported to comprise
the full C-terminal part of NS3 [45,51,56]. It is most likely
that the two different enzymatic activities (RTPase and
NTPase) are exerted by one active site in the same protein,
and are strictly Mg2+-dependent [51,54].

Unlike trypsin, the NS3 protease has a marked preference
for dibasic residues (e.g. Arg and Lys at positions P1 and
P2 [57]) and requires a cofactor supplied by the non-
structural protein NS2B for efficient cleavage of the
dengue virus polyprotein [46]. The NS2B-NS3 protease
catalyzes the cleavage of the viral polyprotein precursor in
the non-structural region at the NS2A/NS2B, NS2B/NS3,
NS3/NS4A, and NS4B/NS5 sites [58,59]. Additional
proteolytic cleavages are within the viral C protein, NS2A,
and NS4A, and at the C-terminal part of NS3 [49,60−62],
whereas the host cell proteases (such as signalase and
furin) act on the remaining cleavage sites [63−66] [Fig. 1
(B)]. Deletion studies have further shown that a central
40-amino acid conserved hydrophilic domain within NS2B
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is sufficient for the cofactor activity [67]. The flanking
hydrophobic residues of NS2B are likely to function to
associate the protease complex and the infected cell
membranes [68] [Fig. 5(A)]. The residues within the core
hydrophilic segment of the cofactor NS2B responsible for
binding the NS3 protease domain have been further
identified [69].

The NS5 proteins of all flaviviruses consist of at least
three very important enzymes that are essential for viral
propagation [70,71]. Located at the NS5 N-terminal part,
approximately 320 residues comprise the S-adenosyl-
methionine-dependent methyltransferase (MTase),
possessing the MTase and guanylyltransferase activities
responsible for capping and methylation of the capped
positive-strand genomic RNA at the 5′-end [Fig. 5(A)].
The structure of MTase of DEN-2 and its complex with
relevant small molecules has been determined by X-ray
crystallography [72]. As the RNA capping is an essential
viral function, it provides a structural basis for the rational
design of drugs against flaviviruses. The C-terminal part
of NS5 is the RNA-dependent RNA polymerase (RdRp) at
residue position 420−900, responsible for synthesis of the
intermediate RNA template for further replication of the
positive-strand genomic RNA [73,74] [Fig. 5(A)]. The
RdRp activity of dengue virus has been shown for several
other flaviviruses, including West Nile virus and Kunjin
virus [71,75−77]. In all flavivirus RdRp, there is an
essential and classical amino acid sequence signature, the
Gly-Asp-Asp motif [71].

Assembly, Maturation, and Release

During the assembly and maturation of viral particles, the

C protein of dengue virus is crucial. The C proteins of
DEN-2 readily form dimers in solution, and can be regarded
as building blocks for NC assembly [78−80]. The
secondary structure of the C protein from residue 21 to
100 is composed of four α-helices: helix I, the N-terminal
part; helix II, hydrophobic and essential for the ER
membrane association; and helices III and IV, the C-
terminal part containing the signal sequence for anchoring
the ER membrane. The N-terminal 20 residue fragment is
flexible [78,81]. The 3D picture of the dengue C protein
shows a dimeric structure maintained by the homotypic
binding domain, facilitating the interaction between RNA
and the C protein by an asymmetric charge distribution,
suggesting the membrane-associated C protein mediates
viral assembly by a highly coordinated interaction with the
prM-E heterodimer in ER [40,81]. Several copies of the C
protein and one copy of the genomic RNA form the NC
that finally buds into the lumen of ER and produces
immature viral particles. It was shown that the C protein
can also be found in the nucleus, and can possibly interact
with heterogeneous nuclear ribonucleoprotein K, suggesting
a role in regulation of the dengue life cycle probably by
controlling apoptosis [82].

Virus maturation is a two-step process. First, during
maturation in the TGN, under low pH conditions, the prM
proteins are conformationally changed and cleaved by the
host cell furin. As a result, the 60 “spikes” composed of
the three prM-E heterodimers that project from the
immature virus surface are dissociated, consequently
forming a smooth surface of mature virus composed of
90 E homodimers (Fig. 2) [66,83,84]. Second, during
exocytosis, a major rearrangement of the E protein occurs.
The anti-parallel E homodimers dissociate into monomers,

Fig. 5 Scheme for the enzymatic activities of dengue virus    (A) Scheme for viral enzymes and non-structural (NS) protein NS2B. The
cofactor NS2B is in white, and the protease (Prot) domain of NS3 (NS3pro), the RNA 5′-triphosphatase (RTPase)/RNA-stimulated nucleoside
triphosphatase (NTPase)/helicase (Hel) domain of NS3, the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains
of NS5 are in blue. The black regions represent the hydrophobic regions flanking the conserved hydrophilic domain of NS2B (cofactor domain).
The protease catalytic triad (His51, Asp75, and Ser135) within the N-terminal 185 amino acid residues of NS3 is indicated. (B) The engineered
recombinant NS2B-NS3 fusion protein is the complex of NS3pro and the central 40 amino acid conserved hydrophilic part of NS2B (CF40)
linked through a flexible glycine-rich linker [(Gly)4Ser(Gly)4]. The construct is designated CF40-gly-NS3pro.
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that then re-associate into parallel homotrimers [14,85,86].
The mature viral particles are then eventually released from
the host cell by exocytosis.

Potential Targets and Progress in Study of
Vaccines and Drugs

The re-emerged dengue fever/DHF has becomes a global
threat and endemic in more than 100 countries throughout
the Americas, Southeast Asia, and western Pacific islands.
It is an increasingly important public health concern, and
challenges scientists to discover new vaccines and antiviral
drugs. There are three strategies for the control of dengue
virus disease: the control and elimination of the mosquito
vector; the development of safe vaccines to prevent
infection; and the search for specific antidengue drugs for
treatment of disease. So far, the only way to prevent dengue
transmission is to control the principal vector mosquito
and reduce human-vector contact, because there is no
approved vaccine or effective antiviral drug for dengue
disease.

In the absence of effective antiviral drugs, vaccination
offers a good option for decreasing the incidence of these
diseases. An ideal dengue vaccine must be effective for all
four virus serotypes, be safe in 9−12-month-old children,
and provide a long-lasting protective immunity. Various
strategies have been used to develop dengue vaccines [87−
89]. Using primates for preclinical evaluation, chimeric
tetravalent vaccines show a high level of neutralizing
antibody against all serotypes, and clinical trials are in
progress [88−90]. Another type of dengue vaccine is the
DNA vaccine [91,92]. Recently, a new dengue tetravalent
DNA vaccine against DEN-3 and DEN-4, based on prM/E
and combined with two previously constructed DNA
vaccines against DEN-1 and DEN-2, has been constructed
[93]. Molecular biology techniques have facilitated the
development of the recombinant subunit vaccines. The
structural proteins (E and prM) and non-structural proteins
(NS1 and NS3) are the dominant sources of cross-reactive
CD4+ and CD8+ cytotoxic T-lymphocyte epitopes [94−
97]. Some immunization studies show that these proteins
are important for inducing protective immunity [98−105].
The combined DNA and protein vaccines have a synergistic
effect on the antibody titers [106−109].

A tetravalent live attenuated vaccine was developed at
the Walter Reed Army Institute of Research (Silver Spring,
USA) and licensed to GlaxoSmithKline [87]. However,
there are still several issues that make the live-attenuated
vaccines problematic, including the phenomenon of
antibody-dependent enhancement [87,110].

There are four stages of the viral life cycle, and each
stage can be considered for the development of drugs. In
stage 1, prevent viral entry or infection of the host cell, or
inhibit fusion of the viral envelope with the host vesicles.
The E protein can be taken as an ideal target. In stage 2,
prevent maturation processing of the individual viral
protein. The well-studied viral protease is considered a
good target. In stage 3, prevent viral RNA synthesis by
inhibiting the viral helicase and RdRp. Finally, in stage 4,
target the host proteins such as furin and signalase that
help the maturation and release of infectious viral particles.

It is well known that dengue virus NS3 is a multifunc-
tional protein with an N-terminal protease domain
(NS3pro), RTPase, an RNA helicase, and an RNA-stimu-
lated NTPase domain in the C-terminal region [45,46] [Fig.
5(A)]. Thus, the dengue virus NS3 plays a crucial role in
viral replication and represents an interesting target for the
development of specific antiviral inhibitors/drugs.

NS3pro is required to process the polyprotein precursor
into the individual functional proteins that are essential for
viral replication, thus NS3pro is a promising drug target
[111]. The 3D structure of the protease domain of NS3
was solved [112]. Several inhibitors targeting hepatitis C
virus (HCV) NS3pro are now in different stages of clinical
trial [113]. A recombinant NS2B-NS3 fusion protein has
been engineered in which a 40 residue cofactor corre-
sponding to the core part of NS2B is covalently connected
through a flexible glycine-rich linker to DEN-2. NS3
protease has been successfully expressed in Escherichia
coli, and the purified protein was found to be highly active
on peptide substrates designed on the base of the
polyprotein cleavage sites [114] [Fig. 5(B)]. The cofactor
NS2B, which has three hydrophobic regions flanking a
conserved hydrophilic domain of approximately 40 amino
acid residues, revealed that this hydrophilic region is
necessary and sufficient for activation of the NS3 protease
domain in vivo and in vitro [67,68]. The substrate-based
inhibitors with a natural dengue recognition sequence can
inhibit the DEN-2 protease in a competitive manner [114−
116]. Similar to the HCV NS3 protease, the small molecule
inhibitors of NS2B-NS3pro, based on the peptide
substrates, have been synthesized [114,115,117−119].
However, in contrast to HCV NS3 protease, some synthetic
peptides representing the polyprotein cleavages sites do
not show an appreciable inhibition on this protease [115]
and some other small inhibitors (molecules) based peptide
substrate have an apparent Ki value at µM and nM [114,
117−119]. According to the crystal structure of the NS3
protease complexed with the mung bean Bowman-Birk
inhibitor [120], several non-substrate-based compounds
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were developed [121]. The crystal structures of a dengue
NS2B-NS3pro complex, and of a West Nile virus NS2B-
NS3pro complex, with a substrate-based inhibitor Bz-Nle-
Lys-Arg-Arg-H have also been solved [122]. The structures
identify the key residues for NS3pro substrate recognition
and clarify the mechanism of NS3pro activation [122].

The NS3 helicase essential for in viral replication also
makes it an attractive target for the design of antiviral
compounds [123,124]. The 3D structure of dengue virus
helicase/NTPase shows that there are three domains:
domains I and II situated at the N-terminal (the NTPase
site resides between these two domains); and the C-terminal
domain III bound to NS5 [125]. A tunnel that runs across
the interface between domain III and the tip of domains I
and II can accommodate a single-stranded nucleic acid
tail along which the enzyme can translocate. This motion
is triggered by NTP hydrolysis to provide the energy [125,
126]. There is no drug to target NS3 helicase. Several low
molecular weight compounds that inhibit the NS3 helicase
from the West Nile virus or the Japanese encephalitis virus
have been described [127]. The regions crucial for the
ATPase or nucleic acid duplex unwinding activity have
been identified by mutagenesis that might be suitable for
the design of allosteric inhibitors [124,128].

The viral polymerase NS5 (RdRp) is also a potential
target for drug design [73,74]. The crystallographic
structure of an active fragment of the dengue virus NS5
RdRp has been refined at 1.85 Å resolution [129]. This
structural information of NS5 RdRp will facilitate the design
of antiviral compounds because the host cells are devoid
of this enzymatic activity. In fact, the selective inhibitors
against HIV-1 reverse transcriptase, and the inhibitors
against hepatitis B virus, cytomegalovirus, and herpes
simplex virus polymerases have been approved as drugs
for treatment of the associated viral infections [130]. In
addition, the interaction between viral NS5 RdRp and the
NS3 helicase also offers a possible target for drug design
[131].

In conclusion, although there are no ideal vaccines or
therapy for the prevention and treatment of DHF, the
understanding of the life cycle of dengue virus has made
great progress over the past few years, and all the life
cycle stages can represent potential targets for antiviral
drug discovery.
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